

Page 2 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

A "therapy" for Covid-19? We have the solution!

When we were kids, even cartoon monsters could scare us to

death. Did this ever happen to you?

And nowadays, now that we are grown men and women, this

virus has scared us in springtime and still frightens us. And it

paralyses us in many different ways, because it is also a "social"

and a "multimedia" virus. A virus that first spread through

rumours and then actually became part of our lives. How can we

get out of this situation? At the moment, we don’t have a vaccine,

a safe therapy. This will require the help of time and medical

science. Meanwhile, we can at least "fight" the psychological part

of the virus with our beloved video games and our glorious

vintage computers.

According to the World Health Organisation (WHO), the world of

video games has an effective "therapeutic" power for all of its

users. Dedicating yourself to video games allows you to get

distracted, you end up engaging yourself in activities that involve

and bring social interactivity (just think about the multiplayer

platforms such as Kaillera). Playing together and sharing

experiences prevents contagion. In fact, it prevents a particular

contagion, which is underestimated but equally dangerous:

loneliness, depression and anxiety. It is not just a question of

"playing games", but interacting with this incredible universe,

thanks also to the many initiatives that arose during this crazy

and unexpected pandemic.

In the world of retrocomputing, we have witnessed with interest

the several online challenges on the old classics, the

programming competitions using languages such as BASIC (for

example, the competition based on the theme of Alien Attack!

that we at RMW have personally promoted) and the relentless

retro-hardware recovery of so many enthusiasts who repair and

regenerate real gems of the past. All this has allowed us to stay

away from those terrible psychological monsters, even more

frightening than those of horror films or the damage to health

that the virus itself can cause to us and our beloved ones. It is

these fears that we must fight, those same monsters that have

accompanied us over these last hard months.

Well, just a few years ago the WHO stated alarmistically enough

that addiction to video games was to be considered as a disease,

they named it "gaming disorder". And now something once

labelled dangerous is becoming a valuable tool that can help us

deal with something much more dangerous. We consider it very

positively that the deep qualities of the video games are being

rediscovered , now seen as a means of communication designed

to unite rather than isolate. Especially in such a difficult time

where we are all indiscriminately subjected to fear and

uncertainty.

Come on, then! The time has come to defeat this "monster" too.

We now know what to do! Let's start by pressing the power

button of our console or favorite home computer. You'll see that

slowly you can turn into a mustache plumber, a spaceship pilot, a

knight in armor, a warrior... We can be all these characters. And

we'll also know how to defeat the end-of-level monster. After all,

think about it, haven't we done it hundreds of times yet? ;-)

Carlo Nith Del Mar Pirazzini

SUMMARY

◊ LM80C Color Computer - part 3

◊ The TMS9918A video chip

◊ Software compatibility between ZX 81
and ZX Spectrum: monsters & ghosts

◊ Alien Attack! From the Amstrad CPC to
the C64 equipped with Simons' Basic

◊ Bombs Away!

◊ A bit of rarity: a treat without trick

◊ The Haunted House ...how to play the
same game on 3 different platforms!

◊ C64: how to disable the keys
corresponding to joystick switches

◊ An introduction to AREXX - part 3

◊ Happy Birthday Monkey Island!

◊ True Lies (SNES)

◊ Billy Masters Was Right (PC)

◊ Project Firestart (C64)

◊ Luigi's Mansion (Game Cube)

◊ Cannon Fodder (Amiga/PC)

◊ Micro Mages (Nes)

◊ Doom (PC)

◊ Nintendo VS Takeshi (FamiCom)

◊ Stormlord (C64)

 Page 3

 Page 5

 Page 8

 Page 11

 Page 17

 Page 24

 Page 27

 Page 42

 Page 44

 Page 47

 Page 49

 Page 50

 Page 51

 Page 53

 Page 55

 Page 57

 Page 59

 Page 61

 Page 63

People involved in preparing this issue of
RetroMagazine World (in no particular order):

• Alberto (Ghostbuster)
Apostolo

• Gianluca Girelli

• Michele "Conte Ugolino"

• Carlo N. Del Mar Pirazzini

• Daniele Brahimi

• Flavio Soldani

• Francesco Fiorentini

• Attilio Capuozzo/RPI
ITALIA

• Querino Ialongo

• Leonardo Miliani

• Edoardo Ullo

• Graphics support
Irene G. Valeri

• Cover
Flavio Soldani

• Proof-reading
Francesco Fiorentini,
David La Monaca,
Alberto Apostolo,
Gianluca Girelli, Carlo N.
Del Mar Pirazzini,
Michele Ugolini

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 3 of 64

HARDWARE

In the previous part, we analyzed how, thanks to the

address decoders, the CPU can select certain chips to

exchange data with. It is in fact the whole set of integrated

circuits that work together that form a computer, it is not

just the CPU. The CPU (Central Processing Unit) is the

main component but is not the only one. The CPU is

basically like an orchestra conductor. The orchestra is

composed of many instruments that are played in a

synchronized and harmonious way with the others precisely

thanks to the conductor who decides the rhythm and the

moments when each and every instrument has to play.

Bringing the analogy to the level of a computer, therefore,

the many instruments are the peripherals that compose

it and the CPU our “conductor”.

Choosing certain instruments instead of others leads to

the composition of a certain type of orchestra, just as

integrated circuits create the characteristics of a system

as a whole. The choice I had in front of me for the LM80C

was the same as in the late 70s and throughout the 80s

of the 20th century the manufacturers of computers and

consoles: to make a computer completely on their own,

also manufacturing the various individual components,

or to choose the way of assembly and create a system

using parts produced by others. For some manufacturers,

the first was a paved road: for example, Commodore owned

MOS Technology, and so his computers were based on

chips designed and built “in-house”. Texas Instruments,

with its TI-99 series computers, also followed the same

path, being a manufacturer of integrated circuits. Others,

on the other hand, relied on what they found on the market:

the most famous example are the well-known MSX

computers, based on components available on the price

lists of various manufacturers. Since I do not yet own my

own production plant, I have opted for the assembly of a

machine, but resorting to components produced not

exclusively for a single system. This has allowed not only

to choose chips that are still easily available in circulation

but also to draw on resources such as documentation and

software that have accelerated and simplified the design

of the computer. Furthermore, if I had opted for chips

created exclusively for a certain system (for example VIC-

II or the SID of Commodore 64) it would not only have

linked me to a certain architecture but, given the demand

on the second-hand market for these highly sought after

chips and no longer in production for years, it would have

put me in front of a large economic outlay that I did not

want to face in any way.

As we have already seen in previous articles, the LM80C

is a system based on the Zilog Z80 microprocessor.

Alongside this I have added auxiliary chips that manage

different computer subsystems, following the philosophy

in vogue in the 80s, namely to lighten the work of the CPU

by delegating part of its tasks to other subsystems. One

of the supporters of this approach was Jay Miner, a US

engineer who designed the graphics chips at the base of

the Atari 2600 console and the Atari 8-bit computers of

the 1980s (figure 1) as well as the creator of the Amiga

project. Assigning burdensome tasks such as, for example,

managing audio and graphics to specialized chips not

only allows you to recover a good slice of computational

power from the CPU to be diverted to other tasks but also

engages in those specially designed chip tasks. Many

inexpensive computers, such as the ZX80, went a different

way, optimizing costs but not performance: the CPU, in

fact, also dealt with video signal generation, and this task

drastically reduced the performance of the system. By

introducing the FAST instruction in the ZX81, which

deactivated the video while performing particularly heavy

tasks, Sinclair tried to put a piece to this problem, allowing

the CPU to disengage from image generation and devote

itself completely to mathematical calculations. Precisely

because the generation of graphic elements of the image

is one of the heaviest tasks, some manufacturers did not

just design chips capable only of generating the video

signal but also worked to integrate additional functions

into their products. One of these is the management of

particular elements that were very popular at the time

because they were widely used in games: sprites.

When I laid the foundations for the LM80C project, I

immediately wanted the computer not only to be able to

generate a reproducible video image on a common TV set

but also to manage colorful graphics and sprite. I therefore

needed a chip dedicated exclusively to the video sector.

However, it must also have been a chip at the time quite

widespread so that bones are now easily available at an

economic price. The choice fell on the TMS9918A from

Texas Instruments, which meets all the requirements. The

TMS9918A was born in 1979 as a graphics chip for the

Texas Instruments TI-99/4 computer. The first version of

this chip is simply called TMS9918 (without the final “A”)

and is a good chip at the time. It has 3 video modes: a

40x24 character textual mode, a 256x192 pixel graphics

based on "tile” and a 64x48 pixel multicolor mode.

LM80C Color Computer
A 2019 self-built Z80-based home computer - part 3

by Leonardo Miliani

Figure 1: The Atari 800XL mounted the custom ANTIC, GTIA
and POKEY chips to lighten the CPU from video and sound

management.

Page 4 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

HARDWARE

Shortly afterwards the project is reviewed and the chip,

which becomes TMS9918A (figure 2), sees the addition

of a graphical mode of type "bitmap” (ie with individually

manageable pixels). The chip is referred to as "Video

Display Processor”, VDP, in the official documentation.

The chip is easily interfaced to any CPU. In fact, it requires

only 3 electrical signals to be driven: CSW/CSR/MODE,

i.e. a “write” signal, a "read” signal and one that sets the

mode, i.e. whether the current operation involves VRAM

memory or one of the internal registers.

The VRAM, the video memory, is separate from the system

memory and the only way the CPU can access it is through

THE VDP. Usually the connection is made by banally

connecting the CSR and CSW pins of THE VDP to the RD

and WR pins of the Z80. To make the signals safer, instead

of making these connections directly, I used the logical

ORs, the 7432 chips. The choice of ORs is not random: in

Boolean logic, the result of an OR is true when at least one

of the two operands is true. Similarly, a 7432 returns a

high signal with even a single high input. Since the signal

is active low, I need a low output: for the output to have

this level it is therefore necessary that both inputs are at

a low level. Since the activation signals are all at a low

level, the ORs ensure that CSW or CSR pins are only selected

when a correct combination of signals on the inputs is

composed. Figure 3 helps us understand this better.

The first OR on the left is used as a "main switch”: only if

THE VDP is selected from the address decoder (seen the

previous time) and the CPU is actually trying to access an

I/O device (state defined by the IORQ pin) will we have

two low level inputs and, consequently, also the output of

the OR at low level. At this point the output of the first OR

becomes one of the 2 inputs of both downstream ORs that

oversee the activation of the read or write signal. Let's

take a practical example. Imagine you want to send data

to THE VDP (so we want to write on the graphics chip).

The signal on VDP_SEL is low thanks to the upstream

action of the device selection decoder. Now, since this is

an I/O operation, the signal on IORQ is also low: having

2 inputs at low level, the output is also at low level. This

signal enters the 2 OR downstream. Since we intend to

send a data to THE VDP, the signal on WR (“write”) becomes

low and at the same time the signal on RD (“read”) becomes

high. It is easy at this point to check that only the CSW

signal is low since only the output of the OR port marked

as U20C (pin 8 in the figure) is low because only here do

you have 2 signals at low level on both inputs. CSR is

instead at a high level because of the WR signal which is high.

Ultimately, we analyze how THE VDP “MODE” pin enters

the field (figure 4). This pin, depending on the level it

assumes, indicates whether the operation refers to the

VRAM or if it is directed to one of the internal registers of

the video chip. The first case occurs when MODE assumes

a low level, while the second when the level is high. At this

point it is easy to have this behavior by connecting the

pin MODE to a CPU address bus pin, so as to obtain the

status change with the simple setting of the I/O port

number. In the case of the LM80C the connection is made

with pin A1. Since THE VDP is mapped to logical port 48

(0011 0000 in binary), reading or writing to that port sets

the pin MODE to low level, thus enabling data exchange

with the VRAM. If instead we access port 50 (0011 0010

in track: note the status of the 2nd bit, highlighted in bold),

the selection of the VDP does not change but the presence

of a high signal on pin A1 simultaneously generates a high

level on the pin MODE, which the VDP interprets as an

exchange of data with one of its registers.

Surely there would be much more to say about the VDP

but the purpose of this article was to examine how the

CPU manages to exchange data with the graphics chip,

not as much as this works.

Well, again this time we have arrived at the greetings, I

will wait for you in the next issue.

USEFUL LINKS

• Project reference website:

http://www.leonardomiliani.com/en/lm80c/

• Electrical diagrams and firmware source code:

https://github.com/leomil72/LM80C

• Hackaday page:

https://hackaday.io/project/165246-lm80c-color

Figure 2: TMS9918A Video Display Processor

Figure 4: VDP pin "MODE"

Figure 3: Logical ORs for selecting read and write
signals for VDP

https://www.leonardomiliani.com/en/lm80c/
https://github.com/leomil72/LM80C
https://hackaday.io/project/165246-lm80c-color-computer

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 5 of 64

HARDWARE

Starting from this issue, we introduce a series of articles

about the components that have formed the backbone of

our beloved retro-systems, be they computers or consoles.

What made a certain system distinctive was its hardware

architecture: unlike today, where computers share the

same architecture (basically a direct evolution of that PC

marketed by IBM in 1981), in the 70s and 80s of the last

century each manufacturer marketed a computer by

elaborating custom projects according to its own choices.

Starting from the selection of the CPU up to the different

custom chips, each component went to assemble a system

that, good or bad, stood out from the others and was, so

to speak, unique. Despite this, many computers resembled

each other because, as mentioned in the previous series

of articles dedicated to my LM80C self-built computer, not

all manufacturers were also manufacturers of ICs, so those

who were not, they were forced to select what the market

offered then. And after the CPU, one of the definitely most

important components was the video processor, which

was entrusted with the task of generating the video image

to be sent to the monitor or the TV connected to the system.

The video processor often had the task of managing not

only the text modes but also the low- and high resolution

graphic modes. The chip we are going to analyze in this

first article of the series, is the TMS9918A from Texas

Instruments, used in lots of computers and consoles of

the time.

TMS9918 Video Display Processor
In the second half of the 70s, the 8-bit computers on sale

were no longer intended purely for amateurs because they

had to be assembled by the user (such as the Apple I, the

Altair 8800 and the like). They finally were complete user-

friendly systems, with their own case equipped with a

keyboard and ready to use: in fact, the user only had to

connect the power supply and a monitor or, more widely,

a common TV at home. So the Commodore PET, the Apple

II and the TRS-80 invaded the homes of millions of users.

Texas Instruments (TI), noticing the remarkable success

obtained by those home computers, decided to enter the

market and began, in 1977, the development of its own

home computer called the TI-99/4: this was similar to a

console, it had the ability to run cartridge games. Later it

was also added the connections for a keyboard and an

expansion port in order to connect additional peripherals.

The TI-99/4 needed a video processor and so TI developed

the TMS9918 (note the absence of the ending "A” in its

name) and they called it Video Display Processor (VDP),

a chip with good technical specifications: the TMS9918

generated a 60 Hz video signal in standard NTSC with a

graphical resolution of 256 rows, 192 columns and 15

colors. It could also handle a 40x24 character text mode

and a 64x48 pixel multicolor mode. The chip designers

decided to ship it with a VRAM (video memory) separated

from the 4 KB system RAM: due to this choice, the CPU

could only write to the video buffer through the VDP. The

advantage proposed by this architecture, however, was

the fact that the VDP did not “steal” memory from the

system in order to manage the video buffer.

Sprite
The TMS9918 supports hardware sprites, special graphical

objects often used in games to represent elements such

as the player's character, enemies or other moving

animations. Interestingly, the term "sprite” was coined

by an IT manager, Dave Ackley, and officially appeared for

the first time in the VDP documentation. Sprites are

graphical objects managed by the video chip that move

around the screen independently of the background,

without altering it. Initially it had been decided to support

only 4 monochrome sprites for technical reasons (limited

VDP access time to the VRAM and little bandwidth of the

latter to pass more information) but Matthew Hagerty and

Pete Macourek, a couple of the VDP designers, managed

to expand the number to 32, adopting a hack based on a

“sprite stack” and a "pre-processing sprite”: during the

course of the video raster to the edges on the side of the

screen (an area of the screen with no information to display)

the chip retrieves the sprite information (pre-fetching)

and saves it into a stack. When the image is generated,

the VDP checks the stack for the 4 sprites that can be

displayed for each individual row and retrieves their data.

However, the limit of the 4 sprites per row remains: in

Figure 1 you can see how the parts of the 5th sprite onwards

are not correctly rendered on screen because they occupy

the same scanning line as the first 4.

The sprites have dimensions of 8x8 or 16x16 pixels (they

are actually composed of 4 side by side sprites), which

can be doubled: in this case the pixels assume a dimension

of 2x2 pixels, so the dimensions of the sprites become,

respectively, 16x16 and 32x32 pixels.

TMS9918A
The TI-99/4 was not a very successful computer. So TI

improved the design and released the TI-99/4A in 1981,

The TMS9918A video chip
by Leonardo Miliani

Figure 1 - TMS9918 displays only 4 sprites per scan line

Page 6 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

HARDWARE

a version revised in many respects and also equipped with

a new graphic chip called TMS9918A. The "A” meant that,

if compared to its predecessor, it has a new operating

mode called “Graphic 2”, which can handle the image in

bitmap mode, i.e. every single pixel is individually addressable.

The TMS9918, in fact, can only handle graphics in tile

mode, where a tileset composed of 256 tiles of 8x8 pixels

each, is used to manage graphics. The limitation of this

mode is that the elements, repeating on the screen, do

not allow to draw complex graphics or images. In order

to support this new bitmap mode, the TMS9918A must

be equipped with 16 KB of VRAM, all necessary to keep in

memory not only all the information related to the video

buffer but also all the data related to the sprites.

Versions and usage
The first version of the chip, the TMS9918 (without the

"A”) was only used for the TI-99/4. The TMS9918A (with

the "A”) was initially used for the TI-99/4A but then

licensed to third parties: thanks to this commercial move,

TI sold many processors and they were widely used in

many systems of the time. It has been mounted on

ColecoVision, CreatiVision and Sega SG-1000 consoles,

Spectravideo computers and, most importantly, the first

series of MSX home computers. Some more modern

consoles, such as the Sega Master System, Sega Game

Gear and Mega Drive mounted graphics chips derived

from the TMS9918A. To adapt the VDP to different systems

and different video signals, specific versions have been

released: the TMS9928A always generates an NTSC signal

in YPbPr version (with colour components) but for countries

with PAL standards the TMS9929A has been created.

Subsequently the project was revised and the new TMS9118,

TMS9128 and TMS9129 were released: these chips are

identical to the models they replace, apart from the function

of a pin and a different management of the VRAM.

N.B.: henceforth “TMS9918A” for convenience will mean

globally both TMS9918A and all its derivatives, since they

share the technical characteristics.

Technical specifications

The TMS9918A communicates with the CPU through an

8-bit data bus and only 3 other signals connected to as

many chip pins: read, write and mode. The first two have

clear meanings while the last one is used to indicate to

the VDP whether the data is to be exchanged with the

VRAM or with one of its internal registers. These registers

are 8 in total and write-only. They are needed to program

the functions of the graphics processor, such as the

graphics mode or in which portions of the VRAM to store

video buffer and sprite data. One register is read-only, the

status log, which provides information about, for example,

the collision between sprites or the interrupt. The video

image is divided into "display planes”. These “levels” are

in number of 35, from 0 to 34: the lower the number, the

closer the plane is to the observer and has higher priority

than the planes below. The first 32 planes are occupied

by sprites, the 33rd floor contains the background image,

the 34th is the "backplane”, which is as wide as the entire

screen image and forms the background of the entire

image and is generally seen as an edge on the central

screen sides. Behind it there is a particular plane called

"external VDP” that would allow the video signal generated

from an external source to be introduced into the image:

the VDP in fact features a video input (only the TMS9918A

model actually does) that, in the plans of the IT designers,

would have served to overprint the objects and text on

the image generated by another VDP, even though, to my

memory, I am not aware of systems that have used this

functionality. The last plane, called “default backplane”,

is a mere black image that appears for example when the

VDP is powered but is not programmed by the CPU. Figure

2 shows an example of sprites overlapping each other and

the text, which occupies one of the last planes of the image.

There are 15 colors available, although they are sometimes

referred to as 16: actually the 16th color is “transparent”

and it's needed to show the image of the plane dedicated

to the external signal. In the event that there is no pixel

on in any of the planes below and, in the absence of an

input signal, then the pixel of the last plane (“default

backplane”) will pass through: this is why it is often thought

that this color is also black, because it passes the color

of the last plane which, in fact, is black.

Regarding VRAM management, the VDP divides the video

memory into various “tables” where, depending on the

selected graphics mode, the data necessary for the

generation of the video image and sprites are stored. The

"pattern table” contains the character patterns, the "name

table” contains the pattern codes to load for each cell of

the screen, the "color table” the color information. The

sprite data are also stored in 2 separate tables: the "sprite

attribute table”, which contains the main sprite data (such

as X and Y coordinates and color) and the "sprite pattern

table”, which instead contains the pixel data that must be

turned on or off to compose the objects.

A major chip deficiency is the absence of hardware scrolling,

both vertical and horizontal. When it was designed, at the

end of the 70s, the games were single-screen based and

this feature was not required. Then at the beginning of Figure 2: sprites rendered above the text, which
occupies one of the top planes of the image

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 7 of 64

HARDWARE

the 80s arcade conversions became popular and they

often featured scrolling as an important element of the

games: all the conversions were greatly affected by this

limitation, because replacing the hardware scrolling with

software routines in most cases produced not enough

good results.

Graphic modes
The TMS9918A, as mentioned, supports 4 graphics modes:

text mode, tileset graphics, bitmap graphics and multicolor.

Text mode:
in this mode the screen is divided into 40x24 cells of 6x8

pixels, for an image resolution of 240x192 pixels. To

manage this mode, the VDP uses a “pattern table” of 2,048

bytes (256 patterns per 8 bytes) and the “name table”,

large 40x24=960 bytes, where each byte represents a

memory cell: each of these cells contains the character

code (from 0 to 255) that the VDP will then pick up from

the pattern table for display. There are only 2 colors

available and they apply to the entire screen: the main

color, used for the bright spots of the individual patterns,

and the background color, used for the off spots and for

the edges of the screen. Because the video cell is only 6

pixels wide, the 2 most significant bits of the patterns are

ignored.

Graphics Mode 1:
this mode is a graphical mode that can also be used to

represent text. The image is divided into 32x24 cells of

8x8 pixels, for a resolution of 256x192 pixels. The pattern

table is large 2,048 bytes (256x8), the name table is 768

bytes because the allowed cells are, as mentioned, 32x24.

Unlike text mode, colors are handled differently in this

mode, and the color table is 32 bytes long: each byte

contains the color of pixels on and off for a block of 8

characters. Border color is independent. Since the available

patterns are only 256 while the cells are 768, this mode

does not allow you to address the individual pixels of the

image: on the other hand, this mode is also used as a text

mode, because you can define patterns with ASCII codes

and then display them on the screen with a simple byte.

Sprites are supported.

Graphics Mode 2:
Graphics mode 2 is a pure bitmap mode, where the graphics

chip can independently handle each individual pixel and

handle an image of 256x192 pixels. Unlike graphics mode

1, in this mode the image is managed with 3 tables of 256

cells of 8x8 pixels each, for a total of 768 different patterns.

The color is also handled differently: each byte (8 pixels)

of the image allows you to use a different primary color

and one for the background. In this mode the pattern table

occupies 6,144 bytes: since each pattern occupies 8x8

pixels, it takes 8 bytes, and since each table contains 256

patterns, it takes 8x256=2,048 bytes for each table. The

same size (6,144 bytes) occupies the color table since,

as mentioned before, each byte of the table indicates the

colors for an 8-pixel video segment. Finally, the name table

is 768 bytes long (32x24 cells): the screen is divided into

3 horizontal areas (top, middle and bottom), and each

area is composed of 256 cells that can contain 256 different

patterns. Graphics mode 2 also supports sprites. Since

the colors of the pixels of each byte of the image (8

horizontal points) are stored in a single byte, where the

color of the pixels on and that of the pixels off are saved,

it is understood that for each cell of 8 pixels you can only

have 2 colors at the same time: if the user tries to draw

something with a third color, the latter alters the primary

color of all the pixels of that byte, as can be seen from the

image in figure 3. This defect is known as "color spill”.

Multi-color graphics mode:
This mode allows you to have a medium resolution image

of 64x48 blocks, where each block actually occupies 4x4

pixels on the screen and can take any of the 15 colors

available. The name table and pattern table are used for

this mode: the color table is not used because the color

information is contained in the pattern table. The name

table consists of 768 bytes pointing to an 8-byte segment

in the pattern table (1,536 bytes). Of this segment each

area of 4x4 blocks indicates the colors for different lines

of the screen and only 2 bytes are used: the first indicates

the colors of the 2 upper blocks and the second that of

the lower blocks. This mode also supports sprites.

Undocumented modes:
“playing” with the settings of registers you can get some

undocumented VDP modes. For example, you can get an

intermediate mode between graph 1 and graph 2, where

you only have 256 patterns as in graph 1 but with the

ability to manage the colors of the individual bytes of the

patterns as in graph 2. Or set a different way for each of

the 3 pattern areas on the screen, for example having the

first 2 areas managed in bitmap mode and the last one in

tile mode, thus allowing you to draw detailed graphics for

the game frame on the first two thirds of the screen and

texts or patterns on the last one, for scores, messages

and more.

Well, that's it for this article. See you next time.

Figure 3: the defect known as "color spill"

Page 8 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

SOFTWARE

As a boy, I used to analyze ingenious little programs

written for ZX 81 (almost always games) but I often

encountered some difficulties in converting

instructions. There is no 100% compatibility between

ZX 81 and ZX Spectrum.

Hardware Differences
The circuits are obviously different. 16 KB memory

expansion for ZX 81 is not usable on ZX Spectrum.

Programs saved on cassettes for ZX 81 cannot be read

on ZX Spectrum. Only the ZX Printer can connect to

both models [Bon83].

The organization of memory is different and

consequently POKE and PEEK commands will also be

different (as well as the machine language routines

and system variables).

The memory area reserved on ZX 81 for the screen

consists of 768 bytes (24 rows by 32 columns of

characters) and low-resolution graphics (64 x 44

pixels).

The ZX Spectrum model has 6912 bytes divided into:

1) 6144 bytes of graphics (256 x 192 pixels or 24 x 32

characters),

2) 768 bytes (24 rows by 32 columns) reserved for

font colors and other video attributes (brightness and

flashing).

The character set for ZX 81 has its own encoding while

the characters from 0 to 127 in the set for ZX

Spectrum are ASCII. For example, in the ZX 81 model

the "A" character and the "A" character in reverse (Fig.

2) have code 38 and 166 respectively [Bon82] while in

the ZX Spectrum model they have the same code 65

(only the video attributes change). Some graphical

characters not in the ZX Spectrum set can be

implemented through User Defined Graphics (UDGs).

BASIC distinct...
Hardware differences affect their respective versions of

BASIC wired in ROM.

BASIC for ZX Spectrum can be considered an

extension and revision of that for ZX 81.

FAST and SLOW commands are missing on ZX

Spectrum because it operates at FAST speed and

transmits video data in SLOW without interfering with

each other's operations and it makes no sense to

emulate them (video management is independent).

PAUSE 0 command emulates PAUSE 40000 for ZX 81

[Lis84b].

SCROLL command is missing because on ZX Spectrum

"scrolling" is automatic but with user control with the

request "scroll ?" which appears at the bottom of the

screen. POKE command 23692,255 (system variable

"SCR CT") followed by PRINT AT 21,31;'' emulates

SCROLL command for ZX 81 (Fig.3).

UNPLOT command for ZX 81 has been replaced by

PLOT OVER 1 command, but care must be taken with

the graphical resolution and programs for ZX 81 in

Software compatibility between ZX-81 and the Spectrum: monsters and ghosts
by Alberto (Ghostbuster) Apostolo

Figure 1 (above) - Figure 2 (below)

Figure 4

Figure 3: apex simbol is obtained with Symbol_Shift+7.

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 9 of 64

SOFTWARE

which PLOT and UNPLOT modify the graphical

characters (Fig.4) in place of PRINT AT commands.

SAVE command for ZX 81 saves programs and data to

the same file while on ZX Spectrum there are multiple

options for saving arrays and byte sequences (screens,

machine language routines). Another difference is

saving BASIC programs with autostart. On ZX

Spectrum you have SAVE s LINE k command where s is

a string and k is the line number to skip to after

loading with LOAD command. On ZX 81, however, it is a

bit more complicated (Fig. 5). The example is taken

from the original manual for ZX81 (chapter 16). After

starting the recorder in REC mode, RUN 100 command

will save the program (as a benign side effect, the last

letter of the name will appear in reverse). After

repositioning the cassette belt, LOAD command

"USELESS" must be given to load the program. After

loading, processing will continue to line 110.

As an alternative for a RUN command, you can give a

GOTO command if you do not want to delete the

variables (while GOSUB is not recommended because it

does not work properly).

Manage collisions in games written in ZX BASIC

Generally, in a game that uses alphanumeric

characters as graphics, collisions are handled with

BASIC statements and not with strange machine

language routines.

One difficulty that can be encountered in converting a

program written for ZX 81 is due to the technique of

using POKE and PEEK to place characters in the

memory area reserved for the screen.

Fig. 6 shows a small game for ZX 81, which appeared

in the Italian magazine LIST no. 1 [Lis84]. The

spaceship at the top of the screen must dodge the

enemies (symbolized by the letter "W"). The

commands are "N" to go left, "M" to go right and "X"

to shoot (each shot subtracts 10 points from the

variable S that stores the score). Fig.7 shows the

version for ZX Spectrum (with changes to lines 20, 70,

75 and THE PAUSE instruction added to improve

gameplay). To manage the collision between the center

of the spacecraft and the enemies, a SCREEN$(row,col)

function was used on line 20 to return the printed

character to the coordinates (row,col) of the screen.

However, a SCREEN$ function has a weakness. For

example, if a high-resolution plotted pixel "soils” the

character printed at the position (row,col) then

SCREEN$ will return an empty string because it cannot

recognize it.

Figure 5

Curious facts
In [Bon83] at page 230, there’s a mistake.
Addresses written in row 20 are for ZX81 not
for Spectrum!

 5 REM "USELESS"
 10 PRINT "THIS IS ALL IT DOES"
 20 STOP
100 SAVE "USELESS"
110 GOTO 10

Figure 6

Figure 7

Figure 8: screenshot of the game in Fig.7

Page 10 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

SOFTWARE

It's a shame SCREEN$ only works with ASCII

characters and can't recognize UDGs and other

graphics characters. The legendary Dilwyn Jones

suggested to circumvent the obstacle by coloring the

graphics and using an ATTR (row,col) function that

returns a number associated with the position

(row,col) equal to Flashing*128 + Brightness*64 +

Paper*8 + Ink. Additionally, ATTR function processing

is 25% faster than SCREEN$ function. Fig.9 shows a

small program written by Dilwyn Jones for ZX

Spectrum in which UDGs are used [Jon83]. The keys to

command the spaceship are: "5" to move left and "8"

to move right.

Conclusions
Why translate a program from ZX 81 to ZX Spectrum

today?

In the world of retrocomputing there are programming

competitions to create software with the least number

of program lines. The small programs created for ZX 81

are a good gym to increase your skill.

Or you want to run a rewritten program on ZX

Spectrum (real or emulated) to take advantage of the

superior features (color, graphics, sound).

There are no fixed conversion "rules". In order not to

hunt monsters and ghosts during the debugging

phase, a preliminary "reverse engineering" is

convenient to understand the behavior of the program

and subsequently improve only the parts related to the

Input-Output, leaving unchanged those consisting of

calculations.

Bibliography

[Bon82] R.Bonelli, "Guida al Sinclair ZX81", Gruppo Editoriale Jackson, 1982,

https://archive.org/details/guidaalsinclairzx81zx80enuovarom

[Bon83] R.Bonelli, "Alla scoperta dello ZX Spectrum", Gruppo Editoriale Jackson, 1983,

https://archive.org/details/allascopertadellozxspectrum

[Hew84] A.Hewson, "ZX equivalents", Sinclair User Magazine, n. 25, Apr.1984, pagg.122-124,

https://archive.org/details/sinclair-user-magazine-025

[Jon83] D.Jones, "Delving deeper into your ZX Spectrum", Interface Publications, 1983.

[Lis84] LIST n.1, Jan-Feb 1984, pag.28,

https://archive.org/details/LIST1984-01

[Lis84b] LIST n.5, Sep-Oct 1984, pag.92,

https://archive.org/details/LIST1984-05

LIST issues (not complete):

https://archive.org/details/listprogrammi

Figure 9

Figure 10: screenshot of the game in Fig.9

https://archive.org/details/allascopertadellozxspectrum
https://archive.org/details/guidaalsinclairzx81zx80enuovarom
https://archive.org/details/LIST1984-01
https://archive.org/details/LIST1984-05
https://archive.org/details/listprogrammi
https://archive.org/details/sinclair-user-magazine-025

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 11 of 64

SOFTWARE

After the article in the last issue dedicated to the game

Alien Attack! written in Locomotive Basic for Amstrad CPC,

I realized that it's been a while since I wrote anything for

my first computer, the Commodore 64. It was a gap that

had to be filled and full with goodwill I decided to convert

that game for the Breadbin. At first glance it might seem

a rather simple operation, in the end they are two 8bit

machines, almost contemporary, very similar in text screen

resolution and both equipped with Basic. But, as the wises

teach, the devil hides in detail.

As I have already written several times, the Locomotive

Basic that equips the Amstrad CPC is a truly advanced

Basic dialect, nothing to do with the limited capabilities

of the Basic V2 that equips the Commodore 64. The

commands that the two Basic dialects have in common

are few and, obviously, I had used in my game most of

those specific to the Locomotive. After a quick analysis I

was still reasonably convinced that I would be able to

transfer all the code fairly easily, with the sole exception

of characters redefinition.

Redefining the characters on Commodore 64 is a rather

long and tedious operation, while it is definitely simple on

the Amstrad CPC thanks to the SYMBOL statement.

Obviously I would have avoided redefining the entire

character set, but to generate the tiles of the game and

the spaceship, as well as the bomb, I would still have to

redesign some characters. When I was resigned to making

this effort, in order to effectively convert the game, I came

up with an idea. An idea called Simons' Basic.

Simons' Basic
The limitation of the Basic V2’s commands and the

consequent relative ease they can be added, has caused,

over the years, the proliferation of several Basic extensions

for the Commodore 64. Undoubtedly one of the most

famous is Simons' Basic.

Created by a talented 16-year-old boy, this software was

released in 1983 and has been incredibly successful ever

since. Anyone who has ever owned a C64 has heard of

Simons' Basic at least once.

The program, generally distributed on cartridges, is now

easily available even in D64 format and adds 114 powerful

commands to the standard Basic!

The purpose of this article is not to illustrate all the

capabilities of Simons' Basic, a book would not suffice,

but to indicate some peculiarities that have been useful

to me for the porting of the game.

Characters redefinition
As mentioned above, the redefinition of the characters on

the Breadbin is quite a long operation; fortunately Simons'

Basic greatly facilitates this task: not at the levels of the

Locomotive Basic, but quite close.

Before the characters can be redefined, however, they

must be copied from ROM to RAM. This operation, which

is quite tricky in Basic V2, translates into Simons' Basic

in just the MEM statement.

As reported in Simons’ Basic’ manual: the MEM command
transfers a copy of the character set from ROM to RAM,
under the control of the Kernal operating system. The
screen is moved to location $CC00.

Keep the highlighted part in mind, you’ll see the reason later.

After copying characters from ROM to RAM, they can be

redefined using the DESIGN statement and the connected

@ command. See the attached code from rows 6000 to 6200.

Not as simple as the Locomotive SYMBOL command, but

close enough.

NOTE: I also created an Excel spreadsheet to automate the
writing of rows needed to redefine a single character: if
you are interested to receive it, just let me know.

PRINT AT

Alien Attack!
from Amstrad CPC to Commodore 64 through Simons' Basic

by Francesco Fiorentini

Page 12 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

SOFTWARE

Another peculiarity of the Simons' Basic is the PRINT AT

command. Completely missing in the Basic standard, it is

comparable to the Locomotive's LOCATE command.

The choice of Simons' Basic was also made for this reason,

since my Amstrad game makes extensive use of this

command to print objects on the screen. Unfortunately

due to poor performance, I could benefit of this command

only in some parts of the code. For game animations and

collisions control I had to rewrite the logic from scratch.

PEEK and POKE
In the Amstrad CPC program, the movement of the spaceship

is generated by a series of characters printed on the screen

and positioned with the LOCATE command.

Although it was possible to do the same in Simon's Basic,

using the PRINT AT statement, to increase the speed I

preferred to print the characters on screen by writing them

directly in memory using the POKE command. You might

think it's hard to calculate all the correct memory locations,

but what at first glance might seem like a complicated

operation is actually quite simple if you have the Commodore

64 video memory map in mind. Commodore 64's video

memory consists of 25 rows and 40 columns that generally

start from the $400 (1024) memory location. But if you

remember, as per the annotiation of the MEM command

in the Simons' Basic manual, after executing this command

the video memory of the Commodore 64 is moved to the

location $CC00 (52224).

The movement of the alien spaceship is managed by two

FOR cycles, one for rows and one for columns. It's pretty

obvious that, in order to print the alien spaceship on the

screen you can use the coordinates provided by the FOR

cycles and sum them to the initial value of the video

memory. Nothing really complex. See the variable AM in

the line 1110.

Once the position of the spaceship has been calculated,

simply write the corresponding character directly into the

video memory using THE POKE command.

See line 1200 which prints the front of the spaceship.

Line 1220 prints the back of the spaceship (the spaceship

consists of two characters). Line 1230, cleans up the trail

of the spaceship, printing the character 32 (a blank space)

on the screen. Repeating this operation creates the effect

of the movement, from left to right, of the spaceship.

The same logic was adopted for the movement of the

bomb, this time vertically.

What about the collisions?
In Locomotive Basic collisions were managed using the

COPYCHR$() command which reveal the value of a character

in a defined position indicated through the LOCATE function.

But wait a minute, I already know the position of my

spaceship... I don’t need the LOCATE this time. Maybe I

can read the value of the character in that particular

position by directly reading the value of the video memory.

How? Using the PEEK statement of course.

See again the line 1110.

Once done, it is sufficient to check this value and, if different

from a blank space (character 32) or the spaceship itself

(characters 254 and 255), it means that there is a collision.

See line 1140.

IF THEN :ELSE
Another reason that led me to use Simons' Basic is the

possibility of using the IF THEN :ELSE construct.

As we all know, Basic V2 lacks of the ELSE condition in

the IF statement. In my opinion, this is a rather important

deficiency because it forces the programmer to carry out

unnecessary checks. Additionally it makes the already

poor readability of the Basic programs even poorer. Luckily

Simons' Basic covers this gap by implementing the ELSE

condition through the syntax :ELSE.

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 13 of 64

SOFTWARE

10 rem **********************************
11 rem alien attack! by francesco fiorentini
12 rem commodore 64 ­ simons' basic
15 rem September 2020
16 rem **********************************
17 hi=5000
18 gosub 10000: rem intro
20 print chr$(147)
29 rem chars redefined
30 gosub 6000
37 rem np=initial palaces numbers ­ th=top high
38 rem vm=starting point of video memory after mem
39 rem it is 52224 but my iterations start at 1...
40 np=6:th=6:lv=1:lf=3:pt=0:ex=15000:vm=52223
69 rem create the background
70 gosub 7000
99 rem initialize game's parameters
100 bf=0:i=0
998 rem ship movement
999 rem r=row am=alienmovement
1000 for r = 1 to 23
1100 for i = 1 to 40
1110 am=vm+i+((r­1)*40): ck=peek(am)
1120 rem collision control
1140 if ck<>32 and ck<>254 and ck<>255 then goto 3000
1200 poke am,af: poke am+3072,0
1220 if i>1 then poke am­1,ab
1230 if i>2 then poke am­2,32
1239 rem controllo della bomba
1240 gosub 5000
1280 next i
1285 poke am,32: poke am­1,32
1290 pt=pt+50: if pt>=ex then 1291:else: goto 1298
1291 ex=ex+15000:lf=lf+1
1292 print at(1,23) "level:"; lv ;"­ lives:"; lf ; "­ points:"; pt
1293 goto 1299
1298 if lv< 10 then print at(30,23) pt :else:print at(31,23) pt
1299 if sf$="00" then goto 1330
1300 rem print at(1,23) sf$
1301 next r
1309 rem level completed!!! move to next one
1310 gosub 6500
1320 goto 70
1329 rem level completed before reaching the ground
1330 pt=pt+(23­r)*100: goto 1310
3000 rem crash
3005 cr$="***":pr$=" ":x=i­2:if x<=0 then x=1:cr$="**":pcr$=" "
3010 print at(x­1,r­1) cr$
3020 lf=lf­1
3030 if lf=0 then goto 3500
3040 for t=1 to 1000: next t
3050 print at(x­1,r­1) pr$
3060 print at(1,23) "level:"; lv ;"­ lives:"; lf ; "­ points:"; pt
3061 rem print at(10,25) "­ hi­score:"; hi; "­"
3070 goto 99

I had to rewrite all the IF - THEN - ELSE conditions to fit

the new syntax, but at least I didn't have to rewrite the

logic of this part of the code too.

Well, the game's ready now. Porting it to the C64 cost me

only a couple of afternoons of adaptation, thanks mainly

to the flexibility of Simons' Basic.

Ah, I forgot... The bomb can be shoot with the '1' key.

Have fun!

Useful links:
From this page you can download the Simons' Basic:

https://www.c64-wiki.com/wiki/Simons%27_BASIC

Here you can find the manual in Italian:

https://archive.org/details/simonsbasic_en

Page 14 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

SOFTWARE

3499 rem game over
3500 print chr$(147)
3510 print at(9,6) "­­­­ game over ­­­­"
3511 print at(13,8) "score: "; pt
3525 for t=1 to 1000: next t
3530 print at(9,10) "­­ play again? y/n ­­"
3531 if pt>hi then hi=pt
3550 get re$
3560 if re$="y" or re$="y" then goto 20
3570 if re$="n" or re$="n" then goto 4999
3580 goto 3550
4998 rem game end
4999 end
5000 rem bomb routines ­ br=bombrow ­ bl=bombline bf=bombflag(0/1=n/y)
5005 get kp
5010 if kp=1 and bf=0 then 5020:else: goto 5025
5019 rem a new bomb
5020 br=r+1: bl=i: bf=1: goto 5190
5024 rem check if a bomb already exists
5025 if bf=0 then 5200:else: br=br+1
5030 if br=24 then goto 5210
5040 poke vm+((br­2)*40)+bl,32
5190 poke vm+((br­1)*40)+bl,bo
5200 return
5210 br=0:bf=0:poke vm+(22*40)+bl,32:sf$=inst("0",sf$,bl)
5220 goto 5200
6000 rem chars redefinition
6001 rem **** IMPORTANT *****
6002 rem $0400­$0757 video­ram before mem
6003 rem video memory starts at 1024
6004 rem $cc00­$cfff video­ram after mem
6005 rem video memory starts at 52224
6009 mem
6010 design 2,$e000 + 254 * 8
6011 @......bb
6012 @.....bbb
6013 @...bbbbb
6014 @..bbb..b
6015 @b.bb.bbb
6016 @bbbbbbbb
6017 @..b...b.
6018 @.b.b.b.b
6020 design 2,$e000 + 255 * 8
6021 @bb......
6022 @bbb.....
6023 @bbbbb...
6024 @b..bbb.b
6025 @bb.bb.bb
6026 @bbbbbbbb
6027 @.b...b..
6028 @b.b.b.b.
6030 design 2,$e000 + 253 * 8
6031 @........
6032 @..b..b..
6033 @...bb...
6034 @..bbbb..
6035 @..bbbb..
6036 @..bbbb..
6037 @..bbbb..
6038 @...bb...
6039 rem palace floors char (230,231,232,233,234,235)
6040 design 2,$e000 + 230 * 8
6041 @bbbbbbbb
6042 @bb.bb.bb
6043 @bbbbbbbb
6044 @bb.bb.bb
6045 @bbbbbbbb
6046 @bb.bb.bb
6047 @bbbbbbbb
6048 @bb.bb.bb
6050 design 2,$e000 + 231 * 8
6051 @bbbbbbbb

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 15 of 64

SOFTWARE

6052 @bbbbb.bb
6053 @bbbbbbbb
6054 @bb.bbbbb
6055 @bbbbb.bb
6056 @bbbbbbbb
6057 @bb.bbbbb
6058 @bbbbbbbb
6060 design 2,$e000 + 232 * 8
6061 @bbbbbbbb
6062 @bb.bb.bb
6063 @bbbbbbbb
6064 @bb.bbbbb
6065 @bbbbb.bb
6066 @bb.bbbbb
6067 @bbbbbbbb
6068 @bbbbbbbb
6070 design 2,$e000 + 233 * 8
6071 @bbbbbbbb
6072 @bbbbbbbb
6073 @bb.bb.bb
6074 @bbbbbbbb
6075 @bb.bb.bb
6076 @bbbbbbbb
6077 @bbbbbbbb
6078 @bbbbbbbb
6080 design 2,$e000 + 234 * 8
6081 @bbbbbbbb
6082 @bb.bb.bb
6083 @bbbbbbbb
6084 @bbbb.bbb
6085 @bbbbbbbb
6086 @bb.bb.bb
6087 @bbbbbbbb
6088 @bbbbbbbb
6090 design 2,$e000 + 235 * 8
6091 @bbbbbbbb
6092 @bb.bbbbb
6093 @bbbbbbbb
6094 @bbbb.bbb
6095 @bbbbbbbb
6096 @bbbbbbbb
6097 @bb.bbbbb
6098 @bbbbbbbb
6099 rem draw palace top1 (240)
6100 design 2,$e000 + 240 * 8
6101 @........
6102 @........
6103 @........
6104 @........
6105 @...bb...
6106 @..bbbb..
6107 @.b.bb.b.
6108 @b.bbbb.b
6109 rem draw palace top2 (241)
6110 design 2,$e000 + 241 * 8
6111 @b......b
6112 @b......b
6113 @b......b
6114 @b......b
6115 @bb....bb
6116 @bbb..bbb
6117 @bbbbbbbb
6118 @bbbbbbbb
6119 rem draw palace top3 (242)
6120 design 2,$e000 + 242 * 8
6121 @...bb...
6122 @.bbbbbb.
6123 @.bbbbbb.
6124 @...bb...
6125 @...bb...
6126 @..bbbb..
6127 @.bbbbbb.
6128 @bbbbbbbb
6129 rem draw palace top4 (243)
6130 design 2,$e000 + 243 * 8

Page 16 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

SOFTWARE

6131 @...bb...
6132 @...bb...
6133 @...bb...
6134 @...bb...
6135 @...bb...
6136 @..bbbb..
6137 @.bbbbbb.
6138 @bbbbbbbb
6139 rem af=alienfront­ab=alienback­bo=bomb
6190 af=255:ab=254:bo=253
6200 return
6499 rem dinamic level management
6500 np=np+1:lv=lv+1:pt=pt+500:th=th+1
6501 if pt>=ex then ex=ex+15000:lf=lf+1
6504 if th>14 then th=15:if np>19 then np=19
6505 print at(9,4) "­­­­­­­­­­­­­­­­­­­­­"
6510 print at(9,5) "­­ go to level";lv;"­­­"
6520 print at(9,6) "­­­­­­­­­­­­­­­­­­­­­"
6525 for t=1 to 1000: next t
6530 print at(9,7) "­­ r u ready? y/n ­­­"
6540 print at(9,8) "­­­­­­­­­­­­­­­­­­­­­"
6550 get re$
6560 if re$="y" or re$="Y" then goto 6591
6565 goto 6550
6591 print chr$(147)
6600 return
7000 rem draw the background
7001 rem al=aleatorio ­ np=numero palazzi ­ p=colore della penna
7002 sf$="00"
7003 print at(1,24) "level:"; lv ;"­ lives:"; lf ; "­ points:"; pt
7004 rem print at(1,25) "­ hi­score:"; hi; "­"
7010 x=20­(np/2)
7020 for n=1 to np
7022 rem change the top of the palace x=int(rnd(1)*(high­low))+low
7025 a=int((rnd(1)*4)+1)
7026 pp=239+a
7030 hi=int(rnd(1)*(th­2))+2
7031 ox=x
7041 sf$=inst("1",sf$,x)
7042 x=ox
7050 for i=hi­1 to 0 step ­1
7051 rem cambia il piano x=int(rnd(1)*(high­low))+low
7052 a=int((rnd(1)*6)+1)
7053 pf=229+a
7063 pk=vm+((23­i­1)*40)+x
7065 if i=hi­1 then 7066:else:goto 7070
7066 poke pk,pp: poke pk+3072,2
7067 goto 7090
7070 poke pk,pf: poke pk+3072,2
7090 next i
7091 x=x+1
7100 next n
7300 return
10000 rem write the intro
10001 ? chr$(147)
10060 print at(5, 2) "our planet is dying."
10061 print at(5, 3) "our species is in danger."
10062 print at(5, 4) "our future is in danger."
10063 print at(5, 5) "our only purpose is survival."
10064 print at(5, 6) "whatever the cost..."
10065 print at(5, 8) "we do not want to live together."
10066 print at(5, 9) "we do not want to live together."
10067 print at(5, 10) "we want the earth!"
10068 print at(5, 11) "whatever the cost..."
10069 print at(5, 13) "whatever the cost!"
10070 print at(5, 15) "this means war!"
10075 for i=1 to 2000:next i
10080 print at(5,19) ">>> alien attack! <<<"
10085 print at(5,21) "commodore 64 porting"
10090 print at(5,22) "2020 ­ francesco fiorentini"
10100 for i=1 to 3000:next i
10110 return

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 17 of 64

SOFTWARE

As Francesco Fiorentini wrote in his article on RMW25 ITA,

a couple of months ago our retro coder hearts beat very

hard during the "challenge" to create a clone of “Air Attack”,

an old game from the 1980s possibly developed for every

platform of the time. After so many years, it's amazing

how this simple game has not only withstood the passage

of time but has actually become an icon that can attract

interest in the modern world as well.

It is even more extraordinary how in non-suspicious times

(about a month before the challenge) I decided to create

my own version to be inserted as a mini-game inside a

larger game of next-gen derivation.

While this idea was forming in my mind, the challenge took

place on RPI pages and so (a FaceBook Italian group of

Retro Programmers), instead of programming the game

using "advanced" techniques (layers or double-buffering

on a graphic screen), I thought of implementing it using

as much code as possible that mimicked its original

behavior (text screen and redefined characters).

Unlike Francesco, I did not have time to complete the work

by the due date of September 24, but I hope that the effort

I made can still be appreciated.

For the sake of brevity, I will focus here only on the

differences of this specific port (written in Hollywood, the

Multimedia Application Layer by Andreas Falkenhahn)

while leaving to the reader the task to study in detail the

original implementation (see: RMW Italian edition no. 25,

p. 22).

Let us start with the constraints that have been set. As

mentioned before, my implementation consists of a mini-

game to be activated inside a more complex and larger

game in order to progress with the story-plot. For this

reason, this particular implementation of "Air Attack" (which

I renamed "Blast Away!") could not constitute a real

challenge in itself, otherwise the overall level of difficulty

would have been too high for the occasional user. That's

why I chose to restrict it to:

- 1 level only;

- 1 life only;

- a limited number of buildings to be destroyed;

- if the bomb goes off it will destroy the building in its

entirety (unlike other implementations);

- level of difficulty set to medium easy (high score not

important).

The next step was to define the graphics: using Gimp (but

any other program would do) I designed the tiles and

other graphic elements, trying to give them a look as

pixellated as possible (see also Francesco's article on the

subject).

As in the original (and Francesco’s implementation) I used

different tiles for the basic shapes of the skyscrapers, a

series of "roofs" that could further diversify them, a

chequered base to simulate a lawn (or the basic footing

of the city), and the "bomber" (our ship) which, given the

spatial theme of the game in which “Blast Away!” is set,

I decided to draw with the likeness of the "Colonial Viper"

from the old TV series "Battlestar Galactica" of the 1980s.

The work is completed by a stylized man with an open

parachute in case the ship hits a building. The initial splash

screen is instead an artwork by my good friend Marco Riva.

The code attached to this article is commented enough

to be self-explanatory, but there are a few points that need

to be clarified. First of all, there are two procedures,

p_Update_input() and p_MouseState(), that are not present

in the original BASIC implementation. The reason for their

introduction is that today's systems are, of course, much

faster than in the past and a simple mouse click actually

corresponds to multiple "states" that are stored in the

input/output buffer. The consequence, regardless of the

user's speed in pressing and releasing the button, is that

Bombs Away!

by Gianluca Girelli

Figura 1 - Bombs Away! splashscreen

Page 18 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

SOFTWARE

the system will continue to react as if the player were

continuously clicking to shoot. Without going into detail,

the aforementioned procedures are meant to limit the

program to reacting only once per click.

Another thing that had to be limited was the "range" of

horizontal positions from where the bomb can be dropped.

Let me explain myself better: unlike the classic implementation

on the text screen, where the ship moves from column to

column, one at a time and over a limited number of columns

(for example 40 on the C64/C128, each 8 pixels wide),

in this case our bomb can fall from any point on the screen

at the resolution of a single pixel, being such implementation

related to a completely graphic environment. This turns

into the fact that a building can only be partially destroyed

because the bomb, not falling exactly inside the column

containing the relevant building, actually "slice it" according

to the vertical plan(see figure 3).

The result is a virtual multiplication of the number of on-

screen buildings that eventually invalidate the initial

assumptions. The solution I identified was to emulate, in

a way transparent for the end-users, the effect of the

existence of the individual columns: thanks to Gimp I so

calculated and stored in a vector the coordinates of the

left and right extremes of each individual building. The

code then, when it detects the mouse pressure and decides

that it is possible to release the bomb (no other bomb

already in flight) detects its Y coordinate, compares it with

those inside the array and, after having corrected it by an

appropriate "offset", drops the bomb.

Figure 2 - The tiles used in the game

Figure 3 - A partially destroyed building

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 19 of 64

SOFTWARE

As for the main loop of the game, it is quite simple and

follows the principles already theorized in my article on

"Game Coding Notes" published on RMW ITA 17: the aim

is to keep everything as simple and linear as possible, so

as to facilitate maintenance and future expansions of the

code. The gameplay control section is virtually detached

from the way you implement it on screen, so you can more

easily adapt the program to different development

environments. In more detail, as a first thing you read all

the inputs and calculate the reactions; only at the end you

do create the graphics with a single rendering cycle. In this

way the movement is more fluid and devoid of the "hang-

ups" that are perceived when the rendering takes place in

several phases (e.g.: calculate ship position; draw ship;

calculate bomb position; if there is an impact show explosion

animation; draw bomb) because during the execution of a

single animation phase the rest is stalled.

Put into "natural language":

Repeat
read input
determine if it is possible to drop a bomb
calculate the next ship
position
if the bomb is in flight, calculate the next
position of the bomb
calculate new score in case of bomb/building
collisions
render the screen (ship, bomb, explosion
animation frame etc.)
check conditions for game over/game won
Until exit=True

With regard to the end-of-game conditions, the mechanism

is very simple: if the next position of the ship is already

occupied (this check is carried out by verifying the color

of the first pixel beyond the nose of the ship: if it is black

we have a building in front of us) then we are in collision

situation(game over); otherwise, if all the buildings have

been destroyed, we won. Like Francesco, I also decided to

link this check to the content of an array whose number of

cells is equal to the virtual columns on the screen, and the

content of the single cell is "1" if a building exists and is

still standing.

The code also contains additional controls, the explanation

of which is not important here.

Finally, since modern games run in full-screen and it was

necessary to simulate an old monitor with edges around

the screen, I used the Hollywood "clip region" command:

CreateClipRegion(1, #BOX, 190, 53, 928, 623)
SetClipRegion(1)

This command is used to create and activate an area on

the screen (which can also have complex shapes) that acts

as a mask: everything inside it is displayed on the screen,

while the rest is hidden. This way our ship will pop up from

the left edge of the screen and then will gradually disappear

as it crosses the right edge.

Francesco's code, related to the implementation of his

“Alien Attack” on Amstrad, ends with the redefinition of the

characters necessary to print instructions and scores on

video. While a port of this code for C64 and C128 will be

published in one of the upcoming issues of RMW, I have

opted to use a third-party futuristic font. This font, called

"Neuropol", is free and freely downloadable for non-

commercial purposes from the link at the bottom of the page.

Although the code shown has not been developed for retro

systems, I hope you will still appreciate its spirit and I hope

that the programming techniques shown here can be of

use to you in the future. Blast Away! runs on various systems,

the first of which is the AmigaOS4.1. Through Hollywood

it can be easily compiled for "Classic" systems (AmigaOS3.x)

as long as you lower the size of the graphics assets.

Source and compiled executable for Win32 systems can

be downloaded from:

www.gdg-entertainment.it/rmw/bombs_away.zip

Have fun!

Figure 4 - In-game graphic

Page 20 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

SOFTWARE

/**
** **
** Name: Bombs Away! **
** Author: Gianluca Girelli **
** Original Code and Graphics: Gianluca Girelli **
** Additional Graphics: Marco Riva **
** Version: 1.0 **
** Date: 08.09.20 **
** Last update: 19.10.20 **
** Interpreter: any **
** Licence: Creative Common 4.0 (CC BY­NC­SA 4.0 INT) **
** Function: Hollywood implementation of "Air Attack" **
** 8­bit videogame. **
** History: **
** 1.0: (22.09.20) **
** ­game complete **
** 0.1: (08.09.20) **
** ­Initial test **
**/

@DISPLAY 1, {X=#CENTER, Y=#CENTER, Width=1280, Height=720, HideTitleBar=True,
 Sizeable=True, ScaleMode=#SCALEMODE_AUTO, Mode = "ask", FitScale = True, KeepProportions = True}

@FONT 1, "neuropol", 36,{Engine=#FONTENGINE_INBUILT}

state=0 ;must be global variable

Function p_Update_input()
;store previous mouse state and read the new one

laststate=currentstate
currentstate=IsLeftMouse()

EndFunction

Function p_MouseState()
; compare present and previous mouse state to determine action to take.
; Events are triggered only if mouse button was just release (mouse state=3)

If laststate=True
If currentstate=True

state=4 ;still pressed
Else

state=3 ;just released
EndIf

Else
If currentstate=True

state=2 ;just pressed
Else

state=1 ;still released
EndIf

EndIf
EndFunction

Function p_AdjustCoordinates(bomb_x_coord)
;mimics a text­only screen by creating "virtual columns" to channel bomb's flight

If bomb_x_coord>=184 And bomb_x_coord<232 Then result=0
If bomb_x_coord>=232 And bomb_x_coord<280 Then result=1
If bomb_x_coord>=280 And bomb_x_coord<328 Then result=2
If bomb_x_coord>=328 And bomb_x_coord<376 Then result=3
If bomb_x_coord>=376 And bomb_x_coord<424 Then result=4
If bomb_x_coord>=424 And bomb_x_coord<472 Then result=5
If bomb_x_coord>=472 And bomb_x_coord<520 Then result=6
If bomb_x_coord>=520 And bomb_x_coord<568 Then result=7
If bomb_x_coord>=568 And bomb_x_coord<616 Then result=8
If bomb_x_coord>=616 And bomb_x_coord<664 Then result=9
If bomb_x_coord>=664 And bomb_x_coord<712 Then result=10
If bomb_x_coord>=712 And bomb_x_coord<760 Then result=11
If bomb_x_coord>=760 And bomb_x_coord<808 Then result=12
If bomb_x_coord>=808 And bomb_x_coord<856 Then result=13
If bomb_x_coord>=856 And bomb_x_coord<904 Then result=14

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 21 of 64

SOFTWARE

If bomb_x_coord>=904 And bomb_x_coord<952 Then result=15
If bomb_x_coord>=952 And bomb_x_coord<1000 Then result=16
If bomb_x_coord>=1000 And bomb_x_coord<1048 Then result=17
If bomb_x_coord>=1048 And bomb_x_coord<1096 Then result=18
If bomb_x_coord>=1096 And bomb_x_coord<1114 Then result=19
Return(result)

EndFunction

Function p_minigame()
LoadBrush(140, "Data/44_2.jpg")
LoadBrush(141, "Data/tile1.png", {Transparency = #WHITE})
LoadBrush(142, "Data/tile2.png", {Transparency = #WHITE})
LoadBrush(143, "Data/tile3.png", {Transparency = #WHITE})
LoadBrush(144, "Data/tile4.png", {Transparency = #WHITE})
LoadBrush(145, "Data/tile5.png", {Transparency = #WHITE})
LoadBrush(146, "Data/tile6.png", {Transparency = #WHITE})
LoadBrush(147, "Data/tile7.png", {Transparency = #WHITE})
LoadBrush(148, "Data/tile8.png", {Transparency = #WHITE})
LoadBrush(149, "Data/tile9.png", {Transparency = #WHITE})
LoadBrush(150, "Data/ship.png", {Transparency = #WHITE})
LoadBrush(151, "Data/bomb.png", {Transparency = #WHITE})
LoadBrush(152, "Data/pilot.png", {Transparency = #WHITE})
LoadBrush(153, "Data/bombsaway.png", {Loadalpha = True})
LoadBrush(154, "Data/grass.png", {Transparency = #WHITE})

Local x=328 ;coordinates of first tile to be drawn
Local y=558
Local altpal=0 ;height of current palace
Local whichtype=0 ;defines which kind of palace to be drawn (3 different types)
Local whichtop=0 ;defines which kind of top to be drawn (6 different types)
Local ship_x=94 ;ship initial coordinates
Local ship_y=100
Local bomb_x=bomb_y=0 ;initial bomb coordinates
Local exit=False
Local fire_enabled=True
;all buildings standing + virtual columns
Local a = {0,0,0,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1,0,0,0,0}
;virtual columns horizontal boundaries (coordinate in pixels)
Local b =

{184,232,280,328,376,424,472,520,568,616,664,712,760,808,856,904,952,1000,1048,1096,1114}
Local column=0
score=0
sum=0 ;transit variable for standing buidings

DisplayBrush(140, #CENTER, #CENTER) ;background
DisplayBrush(153, #CENTER, #CENTER) ;title

WaitLeftMouse()

Cls
SetFont("neuropol", 48)
SetFontStyle(#BOLD)
DisplayBrush(140, #CENTER, #CENTER) ;background
CreateTextObject(1, "How to play")
CreateTextObject(2, "Your ship is slowly flying into the ground. Destroy the buildings for a safe

landing. Press left mouse button to drop a bomb.", {Align=#JUSTIFIED, wordwrap=750})
CreateTextObject(3, "Press left mouse button to start.", {Align=#JUSTIFIED, wordwrap=650})
DisplayTextObject(1, #CENTER, 80)
DisplayTextObject(2, #CENTER, 200)
DisplayTextObject(3, #CENTER, 520)

WaitLeftMouse()

Cls
DisplayBrush(140, #CENTER, #CENTER) ;background

SetFillStyle(#FILLCOLOR)
SetFormStyle(#NORMAL)

Page 22 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

SOFTWARE

CreateClipRegion(1, #BOX, 190, 53, 928, 623)
SetClipRegion(1)

;generating world
For Local i=280 To 1000 Step 48

DisplayBrush(154, i, 612)
Wait(3)

Next
For Local i=1 To 13

altpal=Rnd(5)+1
whichtype=Rnd(3)+1
For Local j=1 To altpal

DisplayBrush(140+whichtype, x, y)
Wait(3)
y=y­48

Next
whichtop=Rnd(6)+4
DisplayBrush(140+whichtop, x, y)
y=558
x=x+48

Next

SetFont("neuropol", 32)
SetFontStyle(#BOLD)
SetFontColor(#WHITE)
Locate(200,45)
Print("Score: "..score)

;commencing game
Repeat

laststate=currentstate=0 ; flush mouse buffer

;read input
p_Update_input()
p_MouseState()

;react to input
If state=3 And fire_enabled And ship_x>184 ;fire has been pressed and bomb is still

unreleased
column=p_AdjustCoordinates(ship_x+24)
bomb_x=b[column]
bomb_y=ship_y+48
fire_enabled=False ;bomb released. no more firing until it hits ground
state=0 ;flush mouse buffer

EndIf

;compute next ship position
If ship_x<1115 ;1015

ship_x=ship_x+4
Else

ship_x=94 ;190
ship_y=ship_y+48

EndIf

;if bomb's away, compute next bomb position
If bomb_y<607 And fire_enabled=False Then bomb_y=bomb_y+8

;updates score in case of impact with standing building (p_GameProgress())
If fire_enabled=False And a[column]=1

a[column]=0
score=score+50

EndIf

;render screen
DisplayBrush(150, ship_x, ship_y)
If fire_enabled=False Then DisplayBrush(151, bomb_x, bomb_y)
Wait(1)
Box(ship_x, ship_y, 96, 48, $6953f5)

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 23 of 64

SOFTWARE

If fire_enabled=False Then Box(bomb_x, bomb_y, 48, 48, $6953f5)

If bomb_y+48>=606
fire_enabled=True
Box(200, 45, 500, 48, $6953f5)
Locate(200,45)
Print("Score: "..score)

EndIf

;termination conditions
sum=0
For Local i=0 To 12

sum=sum+a[i]
Next
If score=650 And sum=0 And bomb_y+48>=606 ;game won

;move ship out of screen boundaries on current row
For Local i=ship_x To 1120 Step 4

DisplayBrush(150, i, ship_y)
Wait(1)
Box(i, ship_y, 96, 48, $6953f5)

Next
;land ship
MoveBrush(150, 190, ship_y+48, 700, 558,{Speed = #SLOWSPEED})
Box(700, 558, 96, 48, $6953f5)
MoveBrush(150, 700, 558, 900, 558,{Speed = #SLOWSPEED})
SetFont("neuropol", 64)
SetFontStyle(#BOLD)
SetFontColor(#WHITE)
CreateTextObject(1, "Game Won !", {Align=#JUSTIFIED, wordwrap=750})
DisplayTextObject(1, #CENTER, #CENTER)
If level=1 Then arcade_game_won=1 Else arcade_game2_won=1
Wait(150)
exit=True

EndIf

If (ship_x+97)<1015 ;avoid the following checks go out of boundaries
If ReadPixel(ship_x+97, ship_y+26)=0 ;game over

Box(ship_x, ship_y, 96, 48, $6953f5)
While ship_y+34<607 ;pilot ejecting and gliding toward ground

DisplayBrush(152, ship_x+34, ship_y)
Wait(1)
Box(ship_x+34, ship_y, 34, 34, $6953f5)
ship_y=ship_y+2

Wend
SetFont("neuropol", 64)
SetFontStyle(#BOLD)
SetFontColor(#WHITE)
DisplayBrush(152, ship_x+34, ship_y) ;fix pilot on ground
CreateTextObject(1, "Game Over", {Align=#JUSTIFIED, wordwrap=750})
DisplayTextObject(1, #CENTER, 250)
Wait(150)
exit=True

EndIf
EndIf

WaitTimer(1, 40) ; script timed at 25fps
Until exit=True

;resets game state
exit=False

FreeClipRegion(1)
For Local i=140 To 154 Do FreeBrush(i)

EndFunction

StartTimer(1)
p_minigame()

Page 24 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

SOFTWARE

In the past, someone complained that RetroMagazine

World often talks about Commodore and Sinclair

computers only. We will never stop repeating that

RetroMagazine World is a magazine open to anyone

who has something interesting to tell about hardware

and software of any computer model. For this issue I

have composed a reasoned list of some programs and

articles published in the Italian magazine LIST for

ORIC-1, Sega SC-3000, Sharp MZ-700 and

MicroProfessor II.

LIST was a very underrated computer magazine (when

I was a high school computer science student, some

professors advised against buying it). Almost all the

articles published were easy to understand and some

were didactically oriented.

I hope I have done some justice to LIST and provided

interesting material to computer owners who have had

little space in the market. Those who do not

understand the Italian language can easily translate

articles and wordings in programs with online

automatic translators.

The (not complete yet!) collection of LIST issues can

be found on the page:

https://archive.org/details/listprogrammi

A bit of rarity
(rummaging here and there)

A treat without trick
by Alberto (Ghostbuster) Apostolo

https://archive.org/details/LIST1984-01

Pag. 08-08 Sega SC-3000 (technical sheet)

Pag. 50-51 ORIC-1 "La fontana" (The fountain, graphics)

Pag. 56-56 Sharp MZ-700 (technical sheet, part 1)

Pag. 57-61 ORIC-1 "Entertainer Rag" (music)

Pag. 64-67 MPF II "Oroscopo" (Horoscope, astrology)

Pag. 68-70 MPF-II "Enalotto" (Italian horse-racing pools)

Pag. 94-95 "Dentro il computer" (Inside the computer, education, part 1)

https://archive.org/details/LIST1984-02

Pag. 11-12 ORIC-1 "Tris" (Tic-Tac-Toe, game)

Pag. 15-16 ORIC-1 "Rally" (game)

Pag. 23-27 MPF II "High Driver" (game)

Pag. 37-38 MPF II "Banca" (Bank account, business)

Pag. 39-40 MPF II "Istogrammi" (Histograms, utility)

Pag. 45-45 ORIC-1 "La torre" (The Tower, math game)

Pag. 46-46 Sharp MZ-700 (technical sheet, part 2)

Pag. 47-48 Sharp MZ-700 "Mastermind" (game)

Pag. 48-49 Sharp MZ-700 "Armonia" (Harmony, astrology)

Pag. 60-62 ORIC-1 "Zhorick" (game)

Pag. 81-82 ORIC-1 "Mosca cieca" (Blindman's bluff, game)

Pag. 83-85 MPF II "O-X" (Othello,Reversi, game)

https://issuu.com/adpware/docs/mc096
https://archive.org/details/listprogrammi
https://archive.org/details/LIST1984-01
https://archive.org/details/LIST1984-02

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 25 of 64

SOFTWARE

Pag. 86-86 ORIC-1 "Conversione da ISSUE binario a decimale" (bin-to-dec, utility)

Pag. 92-94 "Dentro il computer" (Inside the computer, education, part 2)

https://archive.org/details/LIST1984-03

Pag. 13-13 ORIC-1 "Coder-Decoder" (cryptography)

Pag. 14-14 ORIC-1 "Renumber Line" (utility)

Pag. 21-22 ORIC-1 "Falciatrice" (The mower, game)

Pag. 36-39 "Dentro il computer" (Inside the computer, education, part 3)

Pag. 40-40 Correzioni al programma "Tris" (Bug-List of program "Tris", see List n. 1)

Pag. 41-41 Sharp MZ-700 "Caccia al tesoro" (Treasure hunt, game)

Pag. 42-42 ORIC-1 "Istogrammi" (Histograms, utility, Sharp MZ-700 printed in header is a mistake)

Pag. 43-45 ORIC Atmos 48K (technical sheet)

Pag. 57-58 Sega SC-3000 "Cascatutto" (Everything Falls, game)

Pag. 59-60 Sega SC-3000 "Corso Basic" (BASIC course, education, part 1)

Pag. 69-75 MPF II "Fatturazione magazzino" (Inventory invoice, business, part 1)

https://archive.org/details/LIST1984-04

Pag. 18-18 ORIC-1 "Tabella" (printing price lists, utility)

Pag. 32-33 Sega SC-3000 "Corso Basic" (BASIC course, education, part 2)

Pag. 34-35 Sega SC-3000 "Bioritmi" (Biorythm, utility)

Pag. 38-38 Sharp MZ-700 "Istogrammi di percentuali" (Histograms and percentage, utility)

Pag. 39-40 Sharp MZ-700 "Riunisci...la musica" (Collecting music, music)

Pag. 42-43 "Dentro il computer" (Inside the computer, education, part 4)

Pag. 68-69 ORIC-1 "Calendario" (Calendar utility)

Pag. 73-74 MPF II "Quattro in fila" (Four-in-a-row, game)

Pag. 88-90 MPF II "Fatturazione magazzino" (Inventory invoice, business, part 2)

https://archive.org/details/LIST1984-05

Pag. 14-14 Sega SC-3000 "Totocalcio" (Italian football pools)

Pag. 30-30 Sharp MZ-700 "Risoluzione di equazioni con il metodo di Cramer" (Cramer's method, math)

Pag. 45-47 "Dentro il computer" (Inside the computer, education, part 5)

Pag. 64-65 MPF II "Snake" (game)

Pag. 72-73 Sega SC-3000 "Corso di Basic" (BASIC course, education, part 3,4)

https://archive.org/details/LIST1984-06

Pag. 20-21 MPF II "Viaggio nello spazio" (Space journey, game)

Pag. 29-30 ORIC-1 "Gran Prix" (game)

Pag. 31-34 Sega SC-3000 "Caccia al sottomarino" (Submarine hunt, game)

Pag. 35-36 Sharp MZ-700 "Incontri di calcio" (handling football championship results)

Pag. 56-57 "Dentro il computer" (Inside the computer, education, part 6)

Pag. 66-67 Sharp MZ-700 "Tombola" (handling the Bingo)

Pag. 77-78 Sega SC-3000 "Video Picture" (graphics)

Pag. 87-89 Sega SC-3000 "Corso di Basic" (BASIC course, education, part 5)

Pag. 90-91 Sega SC-3000 "Outline" (how changing your character set)

https://archive.org/details/LIST1985-01/mode/2up

Pag. 08-09 Sega SC-3000 "Morra" (Chinese Morra, game)

Pag. 10-11 Sega SC-3000 "Mastermind" (game)

Pag. 15-17 Sharp MZ-700 "Su e giù per la penisola" (part 1, education, geography of Italy)

Pag. 22-24 Sharp MZ-700 "Attacco aereo" (Air attack, game)

Pag. 27-29 ORIC-1 "Levrieri" (Greyhounds, game)

Pag. 45-48 MPF II "Piramide" (Marienbad, game)

Pag. 49-50 Sharp MZ-700 "Istruzioni POKE" (education)

Pag. 53-56 Sega SC-3000 "Corso di Basic" (BASIC course, education, part 6,7)

Pag. 74-77 ORIC-1 "Break-Out" (game)

Pag. 78-79 Sega SC-3000 "Astro War" (game)

Pag. 80-82 Sega SC-3000 "Paroliamo" (Countdown word game)

Pag. 89-90 ORIC-1 "Salta la rana" (Frog, game)

https://archive.org/details/LIST1984-03
https://archive.org/details/LIST1984-04
https://archive.org/details/LIST1984-05
https://archive.org/details/LIST1984-06
https://archive.org/details/LIST1985-01/mode/2up

Page 26 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

SOFTWARE

Pag. 91-93 Sharp MZ-700 "Electronic Mastermind" (game)

Pag. 94-96 Sharp MZ-700 "Saliscendi" (Rise-and-Fall, game)

https://archive.org/details/LIST1985-02

Pag. 26-26 Sharp MZ-700 "Load and Run" (education)

Pag. 28-31 Sega SC-3000 "Corso di Basic" (BASIC course, education, part 8,9,10)

Pag. 32-35 ORIC-1 "Char-constructor" (utility)

Pag. 40-42 ORIC-1 "Smash" (The Wall, game)

Pag. 43-45 Sharp MZ-700 "Su e giù per la penisola" (part 2, education, geography of Italy)

Pag. 57-58 Sega SC-3000 "Uova Spaziali" (Space Eggs, game)

pag. 59-61 Sharp MZ-700 "JAZZI" (Jahtzee, game)

Pag. 67-69 Sharp MZ-700 "Boxe" (game)

Pag. 70-72 Sega SC-3000 "Tiro a volo" (Shooting, game)

Pag. 85-88 Sharp MZ-700 "Slot machine" (game)

Pag. 89-90 Sega SC-3000 "Pianoforte" (music)

https://archive.org/details/LIST1985-04

Pag. 31-33 Sega SC-3000 "Super Master Mind" (game)

Pag. 37-38 Sharp MZ-700 "Sci alpino" (Skiing, game)

Pag. 40-41 Sega SC-3000 "Real golf" (game)

Pag. 46-48 Sharp MZ-700 "Dispersioni termiche" (Heat loss, science)

Pag. 49-50 MPF II "Contraerea" (Flak, game)

Pag. 53-54 Sharp MZ-7000 "Bioritmi" (Biorythm, utility)

Pag. 55-56 ORIC-1 "Cubi" (Cubes, game)

Pag. 57-58 MPF II "Mastermind" (game)

Pag. 84-85 Sega SC-3000 "Archer" (game)

https://archive.org/details/LIST1985-05

Pag. 37-39 Sega SC-3000 "Grafica in 3D" (graphics)

Pag. 40-42 Sharp MZ-7000 "Caccia all'U-boot" (U-boot hunting, game)

Pag. 48-49 ORIC-1 "Oric Sequencer" (music)

Pag. 52-57 MPF II "Black-Jack" (game)

Pag. 62-63 Sega SC-3000 "Decisioni" (Choices, mathematical logic)

Pag. 64-65 Sharp MZ-700 "Analisi" (Calculus, math utility)

Pag. 70-71 ORIC-1 "Equazioni di 1° e 2° grado" (math)

Pag. 72-73 ORIC-1 "Semina" (Seeding, game)

https://archive.org/details/LIST1985-08-09

Pag. 74-78 Sega SC-3000 "Math Software" (math utility)

Pag. 79-81 Sega SC-3000 "Fasi Lunari" (Moon phases, astronomy)

Pag. 82-83 Sharp MZ-700 "Ferma il totale" (Stop the total, math game)

Pag. 84-85 Sharp MZ-700 "Biglietti da visita" (business cards printing, utility)

https://archive.org/details/LIST1985-08-09-speciali

Pag. 06-07 Sega SC-3000 "Sega Graphics" (graphics)

Pag. 19-20 Sega SC-3000 "Simulatore di volo" (Flight Simulator, game)

Pag. 21-21 Sharp MZ-700 "Archivio Sharp" (Archive, utility)

https://archive.org/details/LIST1985-10-11

Pag. 67-70 Sega SC-3000 "Bosco maledetto" (The cursed wood, adventure)

Pag. 70-71 Sega SC-3000 "Calcolo dei solidi" (Solid geometry, math)

Pag. 72-75 Sharp MZ-700 "Elenco fornitori" (Suppliers' List, business)

Pag. 75-78 Sharp MZ-700 "Sette e mezzo" (7 and half Italian BlackJack, game)

https://archive.org/details/LIST1986-04

Pag. 52-54,63-64 Sega SC-3000 "Drawer" (graphics)

Pag. 65-69 Sharp MZ-700 "Gestione Magazzino" (Inventory management, business)

https://archive.org/details/LIST1985-02
https://archive.org/details/LIST1985-04
https://archive.org/details/LIST1985-05
https://archive.org/details/LIST1985-08-09
https://archive.org/details/LIST1985-08-09-speciali
https://archive.org/details/LIST1985-10-11
https://archive.org/details/LIST1986-04

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 27 of 64

SOFTWARE

In the closing article of the last issue I mentioned that I

would enjoy porting Basic code on different platforms.

What you have in your hands is only the first of these works

and I hope it can meet your appreciation.

Haunted House is a game, a textual adventure, published

in the book 'Write your own Adventure Programs for your
microcomputers' published by Usborne Publishing in 1983.

The book aimed to teach how to design and write a textual

adventure in Basic, and Haunted House game was one of

the most significant examples of the volume.

You can find the book on archive.org here: https://archive.org/

details/

Write_Your_Own_Adventure_Programs_1983_Usborne/

While the GW Basic version of Haunted House I found it

at this address:

https://github.com/robhagemans/hoard-of-gwbasic/blob/

master/AllBasicCode/ADV-OLD.BAS

Amstrad CPC
After reviewing the code I realized that it could work

without modification on the Amstrad CPC. I then copied

and pasted the code into WinAPE and like a charm the

adventure started smoothly.

I tried to play the game a bit and it seemed to go on without

any particular problems.

We can therefore say that the porting for Amstrad CPC

was really simple. :-D

Commodore 64
On the wings of enthusiasm I decided to work on the

porting for Commodore 64... And this is where the pain

started.

After pasting the code 'as is' into VICE I received a series

of errors that forced me to review the listing and rewrite

part of the logic.

Fortunately, the program already used only two characters

long variables and therefore perfectly compatible with the

limitation of Basic V2; the main problem of the code was

that some program lines exceeded 80 characters in length.

Some of the lines could fortunately be compressed simply

by removing unnecessary spaces, but others had to be

split to be shortened and in some cases I had to slightly

change their logic.

See, for example, the original line 270 that produced lines

270, 271, and 275 in Commodore 64.

Another striking example is the original line 460, which

handles a conditional GOSUB by the VB variable. In this

case I had to split the row and also manage the value of

the variable VB in order for the conditional jump to remain

efficient.

See rows 460, 461, and 465 in Commodore code 64.

All in all, the conversion for Commodore 64 was quite

easy, once we understood how and where to act.

Visual Basic 6.0
At this point I wanted to raise the difficulty bar and try to

make a much more challenging porting: Visual Basic 6.0.

Some might argue that the VB6 is not exactly retro, but

since it was released in 1998 and is already 22 years old,

I would say that it can be considered retro in all respects.

Of the 3 portings this was definitely the most challenging.

Adapting the GW Basic code created as' deconstructed

The Haunted House
 ...or how to play the same game on 3 different platforms!
by Francesco Fiorentini

Figure 1. Haunted House runs on Amstrad CPC

Figure 2. Haunted House porting on Commodore 64

Page 28 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

SOFTWARE

'programming to a Basic' event driven 'such as Visual

Basic 6, I must admit that it was not a joke. However, I

wanted to try this conversion to understand what level of

difficulty it entailed and whether the result, once achieved,

was worth the effort or not.

Here is a list of the actions I had to take:

- I had to make a distinction between the descriptive area

and the command typing area

- due to the removal of line numbering, I had to modify all

conditional jumps (GOSUB) to point to labels (to do this

first I kept the line number as the label name)

- VB does not handle READ/DATA, so I had to transform

DATA into Array

- old Basic distinguished between variable names if they

contained the type indication; e.g. WA, WA$ and WA%

were three totally different variables. In this case I had to

rename all variables to allow the program to work properly

- I also added an 'About' form to give Usborne Publishing

the credits due

All in all, the result is pleasant. The textual adventure

reflects the spirit of the games of the past, but with a

decidedly more modern look and feel.

In addition, the VB6 offers several potentialities to enrich

our software, and with relatively little effort. Perhaps in

one of RetroMagazine's subsequent releases we could

also think of relaunching Haunted House Enhanced!

You could add a list to represent inventory, or add a series

of buttons to run basic commands (instead of typing them

in from time to time).

A self-fulfilling map could also be added as our hero

advances in exploration. Not to mention transforming a

textual adventure into a textual adventure with graphic,

adding an image for each location.

Obviously these are just ideas that I threw down when I

wrote the article. But the basis is there and implementing

them, as I wrote earlier, would be relatively simple. My

hands itch already to get me to work...: -D

I hope this first article on the porting of Basic programs

can meet your interest and above all can be a stimulus to

rediscover the old programs.

Coming back to Haunted House adventure: if you are

experienced adventurers, solving it will be reasonably

simple, however if you need any help, here you can find a

comfortable walkthrough that will allow you to complete

the game:

https://solutionarchive.com/file/id%2C9320/

So I just wish you all a lot of fun and forgive me for the

excessive length of the enclosed code, but it is, I hope,

for a good cause. :-)

Figure 3. Haunted House porting on Visual Basic 6 with the ''About...'' form

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 29 of 64

SOFTWARE

Original GW-Basic code (MS DOS) - also compatible with Locomotive Basic (Amstrad CPC)

10 REM HAUNTED HOUSE ADVENTURE
20 REM ***********************
30 REM THIS VERSION FOR "MICROSOFT" BASIC
40 REM REQUIRES A MINIMUM OF 16K
50 REM SELECT "TEXT MODE" IF NECESSARY
60 REM ***********************
70 V = 25: W = 36: G = 18
73 DIM R$(63), D$(63), O$(W), V$(V)
77 DIM C(W), L(G), F(W)
80 GOSUB 1600 '­­­­> DO INITIALISATION
85 REM DESCRIPTION AND FEEDBACK
90 CLS : PRINT "HAUNTED HOUSE"
100 PRINT "­­­­­­­­­­­­­"
110 PRINT "YOUR LOCATION"
120 PRINT D$(RM)
130 PRINT "EXITS:";
140 FOR I = 1 TO LEN(R$(RM))
150 PRINT MID$(R$(RM), I, 1); ",";
160 NEXT I
170 PRINT
180 FOR I = 1 TO G
190 IF L(I) = RM AND F(I) = 0 THEN PRINT "YOU CAN SEE "; O$(I); " HERE"
200 NEXT I
210 PRINT "========================="
220 PRINT M$: M$ = "WHAT"
225 REM INPUT AND INPUT ANALYSIS
230 INPUT "WHAT WILL YOU DO NOW"; Q$
240 V$ = "": W$ = "": VB = 0: OB = 0
250 FOR I = 1 TO LEN(Q$)
260 IF MID$(Q$, I, 1) = " " AND V$ = "" THEN V$ = LEFT$(Q$, I ­ 1)
270 IF MID$(Q$, I + 1, 1) <> " " AND V$ <> "" THEN W$ = MID$(Q$, I + 1, LEN(Q$) ­ 1): I = LEN(Q$)
280 NEXT I
290 IF W$ = "" THEN V$ = Q$
300 FOR I = 1 TO V
310 IF V$ = V$(I) THEN VB = I
320 NEXT I
330 FOR I = 1 TO W
340 IF W$ = O$(I) THEN OB = I
350 NEXT I
355 REM ERROR MESSAGES OVERRIDE CONDITIONS
360 IF W$ > "" AND OB = 0 THEN M$ = "THAT'S SILLY"
370 IF VB = 0 THEN VB = V + 1
380 IF W$ = "" THEN M$ = "I NEED TWO WORDS"
390 IF VB > V AND OB > 0 THEN M$ = "YOU CAN'T '" + Q$ + "'"
400 IF VB > V AND OB = 0 THEN M$ = "YOU DON'T MAKE SENSE!"
410 IF VB < V AND OB > 0 AND C(OB) = 0 THEN M$ = "YOU DON'T HAVE '" + W$
420 IF F(26) = 1 AND RM = 13 AND FIX(RND(1) * 4) <> 3 AND VB <> 21 THEN M$ = "BATS ATTACKING!": GOTO 90
430 IF RM = 44 AND FIX(RND(1) * 3) = 1 AND F(24) <> 1 THEN F(27) = 1
440 IF F(0) = 1 THEN LL = LL ­ 1
450 IF LL < 1 THEN F(0) = 0
455 REM BRANCH TO SUBROUTINES
460 ON VB GOSUB 500, 570, 640, 640, 640, 640, 640, 640, 640, 980, 980, 1030, 1070, 1140, 1180, 1220,
1250, 1300, 1340, 1380, 1400, 1430, 1460, 1490, 1510, 1590
470 IF LL = 10 THEN M$ = "YOUR CANDLE IS WANING!"
480 IF LL = 1 THEN M$ = "YOUR CANDLE IS OUT!"
490 GOTO 90
495 REM VERB 1
500 PRINT "WORDS I KNOW:"
510 FOR I = 1 TO V
520 PRINT V$(I); ", ";
530 NEXT I
540 M$ = "": PRINT
550 GOSUB 1580
560 RETURN
565 REM VERB 2
570 PRINT "YOU ARE CARRYING:"
580 FOR I = 1 TO G
590 IF C(I) = 1 THEN PRINT O$(I); ", ";
600 NEXT I
610 M$ = "": PRINT
620 GOSUB 1580
630 RETURN
635 REM VERBS 3 TO 9 INCLUSIVE
640 D = 0
650 IF OB = 0 THEN D = VB ­ 3
660 IF OB = 19 THEN D = 1

Page 30 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

SOFTWARE

670 IF OB = 20 THEN D = 2
680 IF OB = 21 THEN D = 3
690 IF OB = 22 THEN D = 4
700 IF OB = 23 THEN D = 5
710 IF OB = 24 THEN D = 6
720 IF RM = 20 AND D = 5 THEN D = 1
730 IF RM = 20 AND D = 6 THEN D = 3
740 IF RM = 22 AND D = 6 THEN D = 2
750 IF RM = 22 AND D = 5 THEN D = 3
760 IF RM = 36 AND D = 6 THEN D = 1
770 IF RM = 36 AND D = 5 THEN D = 2
780 IF F(14) = 1 THEN M$ = "CRASH! YOU FELL OUT OF THE TREE!": F(14) = 0: RETURN
790 IF F(27) = 1 AND RM = 52 THEN M$ = "GHOSTS WILL NOT LET YOU MOVE": RETURN
800 IF RM = 45 AND C(1) = 1 AND F(34) = 0 THEN M$ = "A MAGICAL BARRIER TO THE WEST": RETURN
810 IF (RM = 26 AND F(0) = 0) AND (D = 1 OR D = 4) THEN M$ = "YOU NEED A LIGHT": RETURN
820 IF RM = 54 AND C(15) <> 1 THEN M$ = "YOU'RE STUCK!": RETURN
830 IF C(15) = 1 AND NOT (RM = 53 OR RM = 54 OR RM = 55 OR RM = 47) THEN M$ = "YOU CAN'T CARRY A BOAT!":
RETURN
840 IF (RM > 26 AND RM < 30) AND F(0) = 0 THEN M$ = "TOO DARK TO MOVE": RETURN
850 F(35) = 0: RL = LEN(R$(RM))
860 FOR I = 1 TO RL
870 U$ = MID$(R$(RM), I, 1)
880 IF (U$ = "N" AND D = 1 AND F(35) = 0) THEN RM = RM ­ 8: F(35) = 1
890 IF (U$ = "S" AND D = 2 AND F(35) = 0) THEN RM = RM + 8: F(35) = 1
900 IF (U$ = "W" AND D = 3 AND F(35) = 0) THEN RM = RM ­ 1: F(35) = 1
910 IF (U$ = "E" AND D = 4 AND F(35) = 0) THEN RM = RM + 1: F(35) = 1
920 NEXT I
930 M$ = "OK"
940 IF F(35) = 0 THEN M$ = "CAN'T GO THAT WAY!"
950 IF D < 1 THEN M$ = "GO WHERE?"
960 IF RM = 41 AND F(23) = 1 THEN R$ = "SW": M$ = "THE DOOR SLAMS SHUT!": F(23) = 0
970 RETURN
975 REM VERBS 10 AND 11
980 IF OB > G THEN M$ = "I CAN'T GET " + W$: RETURN
985 IF L(OB) <> RM THEN M$ = "IT ISN'T HERE"
990 IF F(OB) <> 0 THEN M$ = "WHAT " + W$ + "?"
1000 IF C(OB) = 1 THEN M$ = "YOU ALREADY HAVE IT"
1010 IF OB > 0 AND L(OB) = RM AND F(OB) = 0 THEN C(OB) = 1: L(OB) = 65: M$ = "YOU HAVE THE " + W$
1020 RETURN
1025 REM VERB 12
1030 IF RM = 43 AND (OB = 28 OR OB = 29) THEN F(17) = 0: M$ = "DRAWER OPEN"
1040 IF RM = 28 AND OB = 25 THEN M$ = "IT'S LOCKED"
1050 IF RM = 38 AND OB = 32 THEN M$ = "THAT'S CREEPY!": F(2) = 0
1060 RETURN
1065 REM VERB 13
1070 IF OB = 30 THEN F(18) = 0: M$ = "SOMETHING HERE!"
1080 IF OB = 31 THEN M$ = "THAT'S DISGUSTING!"
1090 IF (OB = 28 OR OB = 29) THEN M$ = "THERE'S A DRAWER"
1100 IF OB = 33 OR OB = 5 THEN GOSUB 1140
1110 IF RM = 43 AND OB = 35 THEN M$ = "THERE'S SOMETHING BEYOND..."
1120 IF OB = 32 THEN GOSUB 1030
1130 RETURN
1135 REM VERB 14
1140 IF RM = 42 AND OB = 33 THEN M$ = "THEY ARE DEMONIC WORKS"
1150 IF (OB = 3 OR OB = 36) AND C(3) = 1 AND F(34) = 0 THEN M$ = "USE THIS WORD WITH CARE 'XZANFAR'"
1160 IF C(5) = 1 AND OB = 5 THEN M$ = "THE SCRIPT IS IN AN ALIEN TONGUE"
1170 RETURN
1175 REM VERB 15
1180 M$ = "OK '" + W$ + "'"
1190 IF C(3) = 1 AND OB = 34 THEN M$ = "*MAGIC OCCURS*": IF RM <> 45 THEN RM = FIX(RND(1) * 64)
1200 IF C(3) = 1 AND OB = 34 AND RM = 45 THEN F(34) = 1
1210 RETURN
1215 REM VERB 16
1220 IF C(12) = 1 THEN M$ = "YOU MADE A HOLE"
1230 IF C(12) = 1 AND RM = 30 THEN M$ = "DUG THE BARS OUT": D$(RM) = "HOLE IN THE WALL": R$(RM) = "NSE"
1240 RETURN
1245 REM VERB 17
1250 IF C(14) <> 1 AND RM = 7 THEN M$ = "THIS IS NO TIME TO PLAY GAMES"
1260 IF OB = 14 AND C(14) = 1 THEN M$ = "YOU SWUNG IT"
1270 IF OB = 13 AND C(13) = 1 THEN M$ = "WHOOSH"
1280 IF OB = 13 AND C(13) = 1 AND RM = 43 THEN R$(RM) = "WN": D$(RM) = "STUDY WITH A SECRET ROOM": M$ =
"YOU BROKE THE THIN WALL"
1290 RETURN
1295 REM VERB 18
1300 IF OB = 14 AND C(14) = 1 THEN M$ = "IT ISN'T ATTACHED TO ANYTHING!"
1310 IF OB = 14 AND C(14) <> 1 AND RM = 7 AND F(14) = 0 THEN M$ = "YOU SEE THICK FORREST AND CLIFF

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 31 of 64

SOFTWARE

SOUTH": F(14) = 1: RETURN
1320 IF OB = 14 AND C(14) <> 1 AND RM = 7 AND F(14) = 1 THEN M$ = "GOING DOWN!": F(14) = 0
1330 RETURN
1335 REM VERB 19
1340 IF OB = 17 AND C(17) = 1 AND C(8) = 0 THEN M$ = "IT WILL BURN YOUR HANDS"
1350 IF OB = 17 AND C(17) = 1 AND C(9) = 0 THEN M$ = "NOTHING TO LIGHT IT WITH"
1360 IF OB = 17 AND C(17) = 1 AND C(9) = 1 AND C(8) = 1 THEN M$= "IT CASTS A FLICKERING LIGHT": F(0) = 1
1370 RETURN
1375 REM VERB 20
1380 IF F(0) = 1 THEN F(0) = 0: M$ = "EXTINGUISHED"
1390 RETURN
1395 REM VERB 21
1400 IF OB = 16 AND C(16) = 1 THEN M$ = "HISSSS"
1410 IF OB = 16 AND C(16) = 1 AND F(26) = 1 THEN F(26) = 0: M$ = "PFFT! GOT THEM"
1420 RETURN
1425 REM VERB 22
1430 IF OB = 10 AND C(10) = 1 AND C(11) = 1 THEN M$ = "SWITCHED ON": F(24) = 1
1440 IF F(27) = 1 AND F(24) = 1 THEN M$ = "WHIZZ ­ VACUUMED THE GHOSTS UP!": F(27) = 0
1450 RETURN
1455 REM VERB 23
1460 IF RM = 43 AND (OB = 27 OR OB = 28) THEN GOSUB 1030
1470 IF RM = 28 AND OB = 25 AND F(25) = 0 AND C(18) = 1 THEN F(25) = 1: R$(RM) = "SEW": D$(RM) = "HUGE
OPEN DOOR": M$ = "THE KEY TURNS"
1480 RETURN
1485 REM VERB 24
1490 IF C(OB) = 1 THEN C(OB) = 0: L(OB) = RM: M$ = "DONE"
1500 RETURN
1505 REM VERB 25
1510 S = 0
1520 FOR I = 1 TO G
1530 IF C(I) = 1 THEN S = S + 1
1540 NEXT I
1550 IF S = 17 AND C(15) <> 1 AND RM <> 57 THEN PRINT "YOU HAVE EVERYTHING": PRINT "RETURN TO THE GATE
FOR FINAL SCORE"
1560 IF S = 17 AND RM = 57 THEN PRINT "DOUBLE SCORE FOR REACHING HERE!": S = S * 2
1570 PRINT "YOUR SCORE = "; S: IF S > 18 THEN PRINT "WELL DONE! YOU HAVE FINISHED THE GAME": END
1580 INPUT "PRESS RETURN TO CONTINUE"; Q$
1590 RETURN
­­
1595 REM GAME INITIALISATION ROUTINE
1600 REM DIM R$(63), D$(63), O$(W), V$(V)
1610 REM DIM C(W), L(G), F(W)
1620 DATA 46,38,35,50,13,18,28,42,10,25,26,4,2,7,47,60,43,32
1630 FOR I = 1 TO G
1640 READ L(I)
1650 NEXT I
1660 DATA HELP,CARRYING?,GO,N,S,W,E,U,D,GET,TAKE,OPEN,EXAMINE,READ,SAY
1665 DATA DIG,SWING,CLIMB,LIGHT,UNLIGHT,SPRAY,USE,UNLOCK,LEAVE,SCORE
1680 FOR I = 1 TO V
1690 READ V$(I)
1700 NEXT I
1705 '­­­­> Possible movements (they are associated with the location, sharing the same index)
1710 DATA SE,WE,WE,SWE,WE,WE,SWE,WS
1720 DATA NS,SE,WE,NW,SE,W,NE,NSW
1730 DATA NS,NS,SE,WE,NWUD,SE,WSUD,NS
1740 DATA N,NS,NSE,WE,WE,NSW,NS,NS
1750 DATA S,NSE,NSW,S,NSUD,N,N,NS
1760 DATA NE,NW,NE,W,NSE,WE,W,NS
1770 DATA SE,NSW,E,WE,NW,S,SW,NW
1780 DATA NE,NWE,WE,WE,WE,NWE,NWE,W
1790 FOR I = 0 TO 63
1800 READ R$(I)
1810 NEXT I
1815 '­­­­> Description of the location
1820 DATA DARK CORNER,OVERGROWN GARDEN,BY LARGE WOODPILE,YARD BY RUBBISH
1830 DATA WEEDPATCH,FOREST,THICK FOREST,BLASTED TREE
1840 DATA CORNER OF HOUSE,ENTRANCE TO KITCHEN,KITCHEN AND GRIMEY COOKER,SCULLERY DOOR
1845 DATA ROOM WITH INCHES OF DUST,REAR TURRET ROOM,CLEARING BY HOUSE,PATH
1860 DATA SIDE OF HOUSE,BACK OF HALLWAY,DARK ALCOVE,SMALL DARK ROOM
1865 DATA BOTTOM OF SPIRAL STAIRCASE,WIDE PASSAGE,SLIPPERY STEPS,CLIFFTOP
1880 DATA NEAR CRUMBLING WALL,GLOOMY PASSAGE,POOL OF LIGHT,IMPRESSIVE VAULTED HALLWAY
1885 DATA HALL BY THICK WOODEN DOOR,TROPHY ROOM,CELLAR WITH BARRED WINDOW,CLIFF PATH
1900 DATA CUPBOARD WITH HANGING COAT,FRONT HALL,SITTING ROOM,SECRET ROOM

Page 32 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

SOFTWARE

1905 DATA STEEP MARBLE STAIRS,DINING ROOM,DEEP CELLAR WITH COFFIN,CLIFF PATH
1920 DATA CLOSET,FRONT LOBBY,LIBRARY OF EVIL BOOKS,STUDY WITH DESK AND HOLE IN WALL
1925 DATA WEIRD COBWEBBY ROOM,VERY COLD CHAMBER,SPOOKY ROOM,CLIFF PATH BY MARSH
1940 DATA RUBBLE­STREWN VERANDAH,FRONT PORCH,FRONT TOWER,SLOPING CORRIDOR
1945 DATA UPPER GALLERY,MARSH BY WALL,MARSH,SOGGY PATH
1960 DATA BY TWISTED RAILING, PATH THROUGH IRON GATE,BY RAILINGS,BENEATH FRONT TOWER
1965 DATA DEBRIS FROM CRUMBLING FACADE,LARGE FALLEN BRICKWORK,ROTTING STONE ARCH,CRUMBLING CLIFFTOP
1980 FOR I = 0 TO 63
1990 READ D$(I)
2000 NEXT I
2010 DATA PAINTING,RING,MAGIC SPELLS,GOBLET,SCROLL,COINS,STATUE,CANDLESTICK
2012 DATA MATCHES,VACUUM,BATTERIES,SHOVEL,AXE,ROPE,BOAT,AEROSOL,CANDLE,KEY
2014 DATA NORTH,SOUTH,WEST,EAST,UP,DOWN
2016 DATA DOOR,BATS,GHOSTS,DRAWER,DESK,COAT,RUBBISH
2018 DATA COFFIN,BOOKS,XZANFAR,WALL,SPELLS
2060 FOR I = 1 TO W
2070 READ O$(I)
2080 NEXT I
2090 F(18) = 1: F(17) = 1: F(2) = 1: F(26) = 1: F(28) = 1: F(23) = 1: LL = 60: RM = 57: M$ = "OK"
2100 RETURN
Commodore 64 version - adapted by F. Fiorentini

10 rem haunted house adventure
20 rem ***********************
30 rem this version for Commodore 64
40 rem requires a minimum of 16k
50 rem F.Fiorentini ­ Ottobre 2020
60 rem ***********************
70 v = 25: w = 36: g = 18
73 dim r$(63), d$(63), o$(w), v$(v)
77 dim c(w), l(g), f(w)
80 gosub 1600 '­­­­> do initialisation
85 rem description and feedback
90 print chr$(147): print "haunted house"
100 print "­­­­­­­­­­­­­"
110 print "your location"
120 print d$(rm)
130 print "exits:";
140 for i = 1 to len(r$(rm))
150 print mid$(r$(rm), i, 1); ",";
160 next i
170 print
180 for i = 1 to g
190 if l(i) = rm and f(i) = 0 then print "you can see "; o$(i); " here"
200 next i
210 print "========================="
220 print m$: m$ = "what"
225 rem input and input analysis
230 input "what will you do now"; q$
240 v$ = "": w$ = "": vb = 0: ob = 0
250 for i = 1 to len(q$)
260 if mid$(q$, i, 1) = " " and v$ = "" then v$ = left$(q$, i ­ 1)
270 if mid$(q$, i + 1, 1) <> " " and v$ <> "" then goto 275
271 goto 280
275 w$ = mid$(q$, i + 1, len(q$) ­ 1): i = len(q$)
280 next i
290 if w$ = "" then v$ = q$
300 for i = 1 to v
310 if v$ = v$(i) then vb = i
320 next i
330 for i = 1 to w
340 if w$ = o$(i) then ob = i
350 next i
355 rem error messages override conditions
360 if w$ > "" and ob = 0 then m$ = "that's silly"
370 if vb = 0 then vb = v + 1
380 if w$ = "" then m$ = "i need two words"
390 if vb > v and ob > 0 then m$ = "you can't '" + q$ + "'"
400 if vb > v and ob = 0 then m$ = "you don't make sense!"
410 if vb < v and ob > 0 and c(ob) = 0 then m$ = "you don't have '" + w$
420 if f(26)=1 and rm=13 and fix(rnd(1)*4) <> 3 and vb <> 21 then goto 425
421 goto 430
425 m$ = "bats attacking!": goto 90
430 if rm = 44 and fix(rnd(1) * 3) = 1 and f(24) <> 1 then f(27) = 1
440 if f(0) = 1 then ll = ll ­ 1
450 if ll < 1 then f(0) = 0
455 rem branch to subroutines
456 if vb > 14 then goto 465
460 on vb gosub 500,570,640,640,640,640,640,640,640,980,980,1030,1070,1140

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 33 of 64

SOFTWARE

461 goto 470
465 on vb­14 gosub 1180,1220,1250,1300,1340,1380,1400,1430,1460,1490,1510,1590
470 if ll = 10 then m$ = "your candle is waning!"
480 if ll = 1 then m$ = "your candle is out!"
490 goto 90
495 rem verb 1
500 print "words i know:"
510 for i = 1 to v
520 print v$(i); ", ";
530 next i
540 m$ = "": print
550 gosub 1580
560 return
565 rem verb 2
570 print "you are carrying:"
580 for i = 1 to g
590 if c(i) = 1 then print o$(i); ", ";
600 next i
610 m$ = "": print
620 gosub 1580
630 return
635 rem verbs 3 to 9 inclusive
640 d = 0
650 if ob = 0 then d = vb ­ 3
660 if ob = 19 then d = 1
670 if ob = 20 then d = 2
680 if ob = 21 then d = 3
690 if ob = 22 then d = 4
700 if ob = 23 then d = 5
710 if ob = 24 then d = 6
720 if rm = 20 and d = 5 then d = 1
730 if rm = 20 and d = 6 then d = 3
740 if rm = 22 and d = 6 then d = 2
750 if rm = 22 and d = 5 then d = 3
760 if rm = 36 and d = 6 then d = 1
770 if rm = 36 and d = 5 then d = 2
780 if f(14)=1 then m$="crash! you fell out of the tree!":f(14)=0:return
790 if f(27)=1 and rm=52 then m$="ghosts will not let you move":return
800 if rm=45andc(1)=1andf(34)=0 then m$="a magical barrier to the west":return
810 if (rm=26 andf(0)=0) and (d=1 or d=4) then m$="you need a light":return
820 if rm = 54 and c(15) <> 1 then m$ = "you're stuck!": return
830 if c(15)=1 and not(rm=53 or rm=54 or rm=55 or rm=47) then goto 835
831 goto 840
835 m$="you can't carry a boat!": return
840 if (rm > 26 and rm < 30) and f(0) = 0 then m$="too dark to move":return
850 f(35) = 0: rl = len(r$(rm))
860 for i = 1 to rl
870 u$ = mid$(r$(rm), i, 1)
880 if (u$ = "n" and d = 1 and f(35) = 0) then rm = rm ­ 8: f(35) = 1
890 if (u$ = "s" and d = 2 and f(35) = 0) then rm = rm + 8: f(35) = 1
900 if (u$ = "w" and d = 3 and f(35) = 0) then rm = rm ­ 1: f(35) = 1
910 if (u$ = "e" and d = 4 and f(35) = 0) then rm = rm + 1: f(35) = 1
920 next i
930 m$ = "ok"
940 if f(35) = 0 then m$ = "can't go that way!"
950 if d < 1 then m$ = "go where?"
960 if rm = 41 and f(23) = 1 then goto 965
961 goto 970
965 r$ = "sw": m$ = "the door slams shut!": f(23) = 0
970 return
975 rem verbs 10 and 11
980 if ob > g then m$ = "i can't get " + w$: return
985 if l(ob) <> rm then m$ = "it isn't here"
990 if f(ob) <> 0 then m$ = "what " + w$ + "?"
1000 if c(ob) = 1 then m$ = "you already have it"
1010 if ob>0 and l(ob)=rm and f(ob)=0 then goto 1015
1011 goto 1020
1015 c(ob)=1:l(ob) = 65: m$ = "you have the " + w$
1020 return
1025 rem verb 12
1030 if rm = 43 and (ob = 28 or ob = 29) then goto 1035
1031 goto 1040
1035 f(17) = 0: m$ = "drawer open"
1040 if rm = 28 and ob = 25 then m$ = "it's locked"
1050 if rm = 38 and ob = 32 then m$ = "that's creepy!": f(2) = 0
1060 return
1065 rem verb 13

Page 34 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

SOFTWARE

1070 if ob = 30 then f(18) = 0: m$ = "something here!"
1080 if ob = 31 then m$ = "that's disgusting!"
1090 if (ob = 28 or ob = 29) then m$ = "there's a drawer"
1100 if ob = 33 or ob = 5 then gosub 1140
1110 if rm = 43 and ob = 35 then m$ = "there's something beyond..."
1120 if ob = 32 then gosub 1030
1130 return
1135 rem verb 14
1140 if rm = 42 and ob = 33 then m$ = "they are demonic works"
1150 if (ob=3 or ob=36) and c(3)=1 and f(34)=0 then goto 1155
1151 goto 1160
1155 m$="use this word with care 'xzanfar'"
1160 if c(5) = 1 and ob = 5 then m$ = "the script is in an alien tongue"
1170 return
1175 rem verb 15
1180 m$ = "ok '" + w$ + "'"
1190 if c(3)=1 and ob=34 then goto 1195
1191 goto 1200
1195 m$="*magic occurs*": if rm<>45 then rm=fix(rnd(1)*64)
1200 if c(3) = 1 and ob = 34 and rm = 45 then f(34) = 1
1210 return
1215 rem verb 16
1220 if c(12) = 1 then m$ = "you made a hole"
1230 if c(12) = 1 and rm = 30 then goto 1235
1231 goto 1240
1235 m$ = "dug the bars out": d$(rm) = "hole in the wall": r$(rm) = "nse"
1240 return
1245 rem verb 17
1250 if c(14) <> 1 and rm = 7 then m$ = "this is no time to play games"
1260 if ob = 14 and c(14) = 1 then m$ = "you swung it"
1270 if ob = 13 and c(13) = 1 then m$ = "whoosh"
1280 if ob=13 and c(13)=1 and rm=43 then goto 1285
1281 goto 1290
1285 r$(rm)="wn":d$(rm)="study with a secret room":m$="you broke the thin wall"
1290 return
1295 rem verb 18
1300 if ob=14 and c(14)=1 then m$="it isn't attached to anything!"
1310 if ob=14 and c(14)<>1 and rm=7 and f(14)=0 then goto 1315
1311 goto 1320
1315 m$="you see thick forrest and cliff south": f(14)=1: return
1320 if ob=14 and c(14)<>1 and rm=7 and f(14)=1 then goto 1325
1321 goto 1330
1325 m$ = "going down!": f(14) = 0
1330 return
1335 rem verb 19
1340 if ob=17 and c(17)=1 and c(8)=0 then m$="it will burn your hands"
1350 if ob=17 and c(17)=1 and c(9)=0 then m$="nothing to light it with"
1360 if ob=17 and c(17)=1 and c(9)=1 and c(8)=1 then goto 1365
1361 goto 1370
1365 m$="it casts a flickering light": f(0)=1
1370 return
1375 rem verb 20
1380 if f(0) = 1 then f(0) = 0: m$ = "extinguished"
1390 return
1395 rem verb 21
1400 if ob = 16 and c(16) = 1 then m$ = "hissss"
1410 if ob=16 and c(16)=1 and f(26)=1 then f(26)=0: m$="pfft! got them"
1420 return
1425 rem verb 22
1430 if ob = 10 and c(10) = 1 and c(11) = 1 then goto 1435
1431 goto 1440
1435 m$ = "switched on": f(24) = 1
1440 if f(27) = 1 and f(24) = 1 then 1445
1441 goto 1450
1445 m$ = "whizz ­ vacuumed the ghosts up!": f(27) = 0
1450 return
1455 rem verb 23
1460 if rm = 43 and (ob = 27 or ob = 28) then gosub 1030
1470 if rm=28 and ob=25 and f(25)=0 and c(18)=1 then goto 1475
1471 goto 1480
1475 f(25)=1: r$(rm)="sew": d$(rm)="huge open door": m$="the key turns"
1480 return

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 35 of 64

SOFTWARE

1485 rem verb 24
1490 if c(ob) = 1 then c(ob) = 0: l(ob) = rm: m$ = "done"
1500 return
1505 rem verb 25
1510 s = 0
1520 for i = 1 to g
1530 if c(i) = 1 then s = s + 1
1540 next i
1550 if s=17 and c(15)<>1 and rm<>57 then goto 1555
1551 goto 1560
1555 print "you have everything": print "return to the gate for final score"
1560 if s = 17 and rm = 57 then goto 1565
1561 goto 1570
1565 print "double score for reaching here!": s = s * 2
1570 print "your score = "; s: if s > 18 then goto 1575
1571 goto 1580
1575 print "well done! you have finished the game": end
1580 input "press return to continue"; q$
1590 return
1595 rem game initialisation routine
1600 rem dim r$(63), d$(63), o$(w), v$(v)
1610 rem dim c(w), l(g), f(w)
1620 data 46,38,35,50,13,18,28,42,10,25,26,4,2,7,47,60,43,32
1630 for i = 1 to g
1640 read l(i)
1650 next i
1660 data help,carrying?,go,n,s,w,e,u,d,get,take,open,examine,read,say
1665 data dig,swing,climb,light,unlight,spray,use,unlock,leave,score
1680 for i = 1 to v
1690 read v$(i)
1700 next i
1705 rem possible movements (associated with the location, same index)
1710 data se,we,we,swe,we,we,swe,ws
1720 data ns,se,we,nw,se,w,ne,nsw
1730 data ns,ns,se,we,nwud,se,wsud,ns
1740 data n,ns,nse,we,we,nsw,ns,ns
1750 data s,nse,nsw,s,nsud,n,n,ns
1760 data ne,nw,ne,w,nse,we,w,ns
1770 data se,nsw,e,we,nw,s,sw,nw
1780 data ne,nwe,we,we,we,nwe,nwe,w
1790 for i = 0 to 63
1800 read r$(i)
1810 next i
1815 rem description of the location
1820 data dark corner,overgrown garden,by large woodpile,yard by rubbish
1830 data weedpatch,forest,thick forest,blasted tree, corner of house
1840 data entrance to kitchen,kitchen and grimey cooker,scullery door
1845 data room with inches of dust,rear turret room,clearing by house,path
1860 data side of house,back of hallway,dark alcove,small dark room
1865 data bottom of spiral staircase,wide passage,slippery steps,clifftop
1880 data near crumbling wall,gloomy passage,pool of light
1881 data impressive vaulted hallway, hall by thick wooden door
1885 data trophy room,cellar with barred window,cliff path
1900 data cupboard with hanging coat,front hall,sitting room,secret room,closet
1905 data steep marble stairs,dining room,deep cellar with coffin,cliff path
1920 data front lobby,library of evil books,study with desk and hole in wall
1925 data weird cobwebby room,very cold chamber,spooky room,cliff path by marsh
1940 data rubble­strewn verandah,front porch,front tower,sloping corridor
1945 data upper gallery,marsh by wall,marsh,soggy path,by twisted railing
1960 data path through iron gate,by railings,beneath front tower
1965 data debris from crumbling facade,large fallen brickwork
1966 data rotting stone arch,crumbling clifftop
1980 for i = 0 to 63
1990 read d$(i)
2000 next i
2010 data painting,ring,magic spells,goblet,scroll,coins,statue,candlestick
2012 data matches,vacuum,batteries,shovel,axe,rope,boat,aerosol,candle,key
2014 data north,south,west,east,up,down
2016 data door,bats,ghosts,drawer,desk,coat,rubbish
2018 data coffin,books,xzanfar,wall,spells
2060 for i = 1 to w
2070 read o$(i)
2080 next i
2090 f(18)=1:f(17)=1:f(2)=1:f(26)=1:f(28)=1:f(23)=1:ll=60:rm=57:m$="ok"
2100 return

Page 36 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

SOFTWARE

Visual Basic 6.0 code - adapted by F. Fiorentini

VERSION 5.00
Begin VB.Form About
 BorderStyle = 3 'Fixed Dialog
 Caption = "About..."
 ClientHeight = 2175
 ClientLeft = 45
 ClientTop = 390
 ClientWidth = 4560
 LinkTopic = "Form2"
 MaxButton = 0 'False
 MinButton = 0 'False
 ScaleHeight = 2175
 ScaleWidth = 4560
 ShowInTaskbar = 0 'False
 StartUpPosition = 1 'CenterOwner
 Begin VB.Image Image1
 Height = 1000
 Left = 2700
 Picture = "About.frx":0000
 Stretch = ­1 'True
 Top = 870
 Width = 1680
 End
 Begin VB.Label Label1
 Caption = "Label1"
 BeginProperty Font
 Name = "MS Sans Serif"
 Size = 8.25
 Charset = 0
 Weight = 700
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 ForeColor = &H00000080&
 Height = 1935
 Left = 200
 TabIndex = 0
 Top = 120
 Width = 4095
 End
End
Attribute VB_Name = "About"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Private Sub Form_Load()
Label1.Caption = "HAUNTED HOUSE" & vbCrLf & "Also Known As: La Casa Encantada" & vbCrLf & "Publisher :
Usborne Publishing Ltd"
Label1.Caption = Label1.Caption & vbCrLf & "Release Year: 1983" & vbCrLf & "Original version: GW Basic"
& vbCrLf & vbCrLf & "Visual Basic version"
Label1.Caption = Label1.Caption & vbCrLf & "Francesco Fiorentini" & vbCrLf & "September 2020"
End Sub
VERSION 5.00
Begin VB.Form HauntedHouse
 BackColor = &H00E0E0E0&
 BorderStyle = 3 'Fixed Dialog
 Caption = "HAUNTED HOUSE by Usborne Publishing Ltd 1983 ­ VB6 port by F. Fiorentini 2020"
 ClientHeight = 5730
 ClientLeft = 8295
 ClientTop = 5670
 ClientWidth = 10575
 ForeColor = &H00000040&
 LinkTopic = "Form1"
 MaxButton = 0 'False
 MinButton = 0 'False
 ScaleHeight = 5730
 ScaleWidth = 10575
 ShowInTaskbar = 0 'False
 Begin VB.CommandButton Command1
 Caption = "About"
 BeginProperty Font
 Name = "MS Sans Serif"
 Size = 9.75
 Charset = 0
 Weight = 700
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 37 of 64

SOFTWARE

 EndProperty
 Height = 495
 Left = 9600
 TabIndex = 3
 Top = 5160
 Width = 855
 End
 Begin VB.CommandButton Command_Check
 Caption = "OK"
 BeginProperty Font
 Name = "MS Sans Serif"
 Size = 9.75
 Charset = 0
 Weight = 700
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 495
 Left = 9000
 TabIndex = 2
 Top = 5160
 Width = 495
 End
 Begin VB.TextBox InputString
 BeginProperty Font
 Name = "Verdana"
 Size = 14.25
 Charset = 0
 Weight = 400
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 Height = 495
 Left = 50
 TabIndex = 1
 Top = 5160
 Width = 8895
 End
 Begin VB.TextBox Testo
 BackColor = &H00E0E0E0&
 BeginProperty Font
 Name = "Trebuchet MS"
 Size = 12
 Charset = 0
 Weight = 700
 Underline = 0 'False
 Italic = 0 'False
 Strikethrough = 0 'False
 EndProperty
 ForeColor = &H00000040&
 Height = 5055
 Left = 50
 Locked = ­1 'True
 MultiLine = ­1 'True
 ScrollBars = 2 'Vertical
 TabIndex = 0
 Text = "Haunted House.frx":0000
 Top = 0
 Width = 10455
 End
End
Attribute VB_Name = "HauntedHouse"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Option Explicit
Dim V, W, G, I, VB, OB As Integer
Dim R, D, O, S
Dim Varray, RArray, DArray, OArray, LArray
Dim M$
Dim V_$
Dim W_$
Dim R_$
Dim U$
Dim Q$
Dim RM, LL
Dim FArray
Dim C(36)
Dim F(36)

Page 38 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

SOFTWARE

Dim RL
Dim AddString As String
Private Sub Command_Check_Click()
Q$ = UCase(InputString)
M$ = ""
'­­­­­­­­­­ Controllo dell'azione
V_$ = "": W_$ = "": VB = 0: OB = 0
For I = 1 To Len(Q$)
 If Mid$(Q$, I, 1) = " " And V_$ = "" Then V_$ = Left$(Q$, I ­ 1)
 If Mid$(Q$, I + 1, 1) <> " " And V_$ <> "" Then W_$ = Mid$(Q$, I + 1, Len(Q$) ­ 1): I = Len(Q$)
Next I
If W_$ = "" Then V_$ = Q$
For I = 1 To V
 If V_$ = Varray(I) Then VB = I
Next I
For I = 1 To W
 If W_$ = OArray(I) Then OB = I
Next I
Rem ERROR MESSAGES OVERRIDE CONDITIONS
If W_$ > "" And OB = 0 Then M$ = "THAT'S SILLY"
If VB = 0 Then VB = V + 1
If W_$ = "" Then M$ = "I NEED TWO WORDS"
If VB > V And OB > 0 Then M$ = "YOU CAN'T '" + Q$ + "'"
If VB > V And OB = 0 Then M$ = "YOU DON'T MAKE SENSE!"
If VB < V And OB > 0 And C(OB) = 0 Then M$ = "YOU DON'T HAVE '" + W_$
If FArray(26) = 1 And RM = 13 And Fix(Rnd(1) * 4) <> 3 And VB <> 21 Then M$ = "BATS ATTACKING!": GoTo
Stampa
If RM = 44 And Fix(Rnd(1) * 3) = 1 And FArray(24) <> 1 Then FArray(27) = 1
If FArray(0) = 1 Then LL = LL ­ 1
If LL < 1 Then FArray(0) = 0
Rem BRANCH TO SUBROUTINES
On VB GoSub 500, 570, 640, 640, 640, 640, 640, 640, 640, 980, 980, 1030, 1070, 1140, 1180, 1220, 1250,
1300, 1340, 1380, 1400, 1430, 1460, 1490, 1510, 1590
If LL = 10 Then M$ = "YOUR CANDLE IS WANING!"
If LL = 1 Then M$ = "YOUR CANDLE IS OUT!"
GoTo Stampa
500:
Rem VERB 1
AddString = "WORDS I KNOW:" & vbCrLf
For I = 1 To V
AddString = AddString & Varray(I) & ", "
Next I
M$ = ""
AddString = AddString & vbCrLf
Return
570:
Rem VERB 2
AddString = "YOU ARE CARRYING:" & vbCrLf
For I = 1 To G
If C(I) = 1 Then AddString = AddString & OArray(I) & ", "
Next I
AddString = AddString & vbCrLf
M$ = ""
Return
640:
Rem VERBS 3 TO 9 INCLUSIVE
D = 0
If OB = 0 Then D = VB ­ 3
If OB = 19 Then D = 1
If OB = 20 Then D = 2
If OB = 21 Then D = 3
If OB = 22 Then D = 4
If OB = 23 Then D = 5
If OB = 24 Then D = 6
If RM = 20 And D = 5 Then D = 1
If RM = 20 And D = 6 Then D = 3
If RM = 22 And D = 6 Then D = 2
If RM = 22 And D = 5 Then D = 3
If RM = 36 And D = 6 Then D = 1
If RM = 36 And D = 5 Then D = 2
If FArray(14) = 1 Then M$ = "CRASH! YOU FELL OUT OF THE TREE!": FArray(14) = 0: Return
If FArray(27) = 1 And RM = 52 Then M$ = "GHOSTS WILL NOT LET YOU MOVE": Return
If RM = 45 And C(1) = 1 And FArray(34) = 0 Then M$ = "A MAGICAL BARRIER TO THE WEST": Return
If (RM = 26 And FArray(0) = 0) And (D = 1 Or D = 4) Then M$ = "YOU NEED A LIGHT": Return
If RM = 54 And C(15) <> 1 Then M$ = "YOU'RE STUCK!": Return
If C(15) = 1 And Not (RM = 53 Or RM = 54 Or RM = 55 Or RM = 47) Then M$ = "YOU CAN'T CARRY A BOAT!":

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 39 of 64

SOFTWARE

Return
If (RM > 26 And RM < 30) And FArray(0) = 0 Then M$ = "TOO DARK TO MOVE": Return
FArray(35) = 0: RL = Len(RArray(RM))
For I = 1 To RL
U$ = Mid$(RArray(RM), I, 1)
If (U$ = "N" And D = 1 And FArray(35) = 0) Then RM = RM ­ 8: FArray(35) = 1
If (U$ = "S" And D = 2 And FArray(35) = 0) Then RM = RM + 8: FArray(35) = 1
If (U$ = "W" And D = 3 And FArray(35) = 0) Then RM = RM ­ 1: FArray(35) = 1
If (U$ = "E" And D = 4 And FArray(35) = 0) Then RM = RM + 1: FArray(35) = 1
Next I
M$ = "OK"
If FArray(35) = 0 Then M$ = "CAN'T GO THAT WAY!"
If D < 1 Then M$ = "GO WHERE?"
If RM = 41 And FArray(23) = 1 Then R_$ = "SW": M$ = "THE DOOR SLAMS SHUT!": FArray(23) = 0
Return
980:
Rem VERBS 10 AND 11
If OB > G Then M$ = "I CAN'T GET " + W_$: Return
If LArray(OB) <> RM Then M$ = "IT ISN'T HERE"
If FArray(OB) <> 0 Then M$ = "WHAT " + W_$ + "?"
If C(OB) = 1 Then M$ = "YOU ALREADY HAVE IT"
If OB > 0 And LArray(OB) = RM And FArray(OB) = 0 Then C(OB) = 1: LArray(OB) = 65: M$ = "YOU HAVE THE " +
W_$
Return
1030:
Rem VERB 12
If RM = 43 And (OB = 28 Or OB = 29) Then FArray(17) = 0: M$ = "DRAWER OPEN"
If RM = 28 And OB = 25 Then M$ = "IT'S LOCKED"
If RM = 38 And OB = 32 Then M$ = "THAT'S CREEPY!": FArray(2) = 0
Return
1070:
Rem VERB 13
If OB = 30 Then FArray(18) = 0: M$ = "SOMETHING HERE!"
If OB = 31 Then M$ = "THAT'S DISGUSTING!"
If (OB = 28 Or OB = 29) Then M$ = "THERE'S A DRAWER"
If OB = 33 Or OB = 5 Then GoSub 1140
If RM = 43 And OB = 35 Then M$ = "THERE'S SOMETHING BEYOND..."
If OB = 32 Then GoSub 1030
If OB > 0 And M$ = "" Then M$ = "NOTHING REALLY USEFUL FOUND..."
Return
1140:
Rem VERB 14
If RM = 42 And OB = 33 Then M$ = "THEY ARE DEMONIC WORKS"
If (OB = 3 Or OB = 36) And C(3) = 1 And FArray(34) = 0 Then M$ = "USE THIS WORD WITH CARE 'XZANFAR'"
If C(5) = 1 And OB = 5 Then M$ = "THE SCRIPT IS IN AN ALIEN TONGUE"
Return
1180:
Rem VERB 15
M$ = "OK '" + W_$ + "'"
If C(3) = 1 And OB = 34 Then M$ = "*MAGIC OCCURS*": If RM <> 45 Then RM = Fix(Rnd(1) * 64)
If C(3) = 1 And OB = 34 And RM = 45 Then FArray(34) = 1
Return
1220:
Rem VERB 16
If C(12) = 1 Then M$ = "YOU MADE A HOLE"
If C(12) = 1 And RM = 30 Then M$ = "DUG THE BARS OUT": DArray(RM) = "HOLE IN THE WALL": RArray(RM) =
"NSE"
Return
1250:
Rem VERB 17
If C(14) <> 1 And RM = 7 Then M$ = "THIS IS NO TIME TO PLAY GAMES"
If OB = 14 And C(14) = 1 Then M$ = "YOU SWUNG IT"
If OB = 13 And C(13) = 1 Then M$ = "WHOOSH"
If OB = 13 And C(13) = 1 And RM = 43 Then RArray(RM) = "WN": DArray(RM) = "STUDY WITH A SECRET ROOM": M$
= "YOU BROKE THE THIN WALL"
Return
1300:
Rem VERB 18
If OB = 14 And C(14) = 1 Then M$ = "IT ISN'T ATTACHED TO ANYTHING!"
If OB = 14 And C(14) <> 1 And RM = 7 And FArray(14) = 0 Then M$ = "YOU SEE THICK FORREST AND CLIFF
SOUTH": FArray(14) = 1: Return
If OB = 14 And C(14) <> 1 And RM = 7 And FArray(14) = 1 Then M$ = "GOING DOWN!": FArray(14) = 0
Return
1340:

Page 40 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

SOFTWARE

Rem VERB 19
If OB = 17 And C(17) = 1 And C(8) = 0 Then M$ = "IT WILL BURN YOUR HANDS"
If OB = 17 And C(17) = 1 And C(9) = 0 Then M$ = "NOTHING TO LIGHT IT WITH"
If OB = 17 And C(17) = 1 And C(9) = 1 And C(8) = 1 Then M$ = "IT CASTS A FLICKERING LIGHT": FArray(0) =
1
Return
1380:
Rem VERB 20
If FArray(0) = 1 Then FArray(0) = 0: M$ = "EXTINGUISHED"
Return
1400:
Rem VERB 21
If OB = 16 And C(16) = 1 Then M$ = "HISSSS"
If OB = 16 And C(16) = 1 And FArray(26) = 1 Then FArray(26) = 0: M$ = "PFFT! GOT THEM"
Return
1430:
Rem VERB 22
If OB = 10 And C(10) = 1 And C(11) = 1 Then M$ = "SWITCHED ON": FArray(24) = 1
If FArray(27) = 1 And FArray(24) = 1 Then M$ = "WHIZZ ­ VACUUMED THE GHOSTS UP!": FArray(27) = 0
Return
1460:
Rem VERB 23
If RM = 43 And (OB = 27 Or OB = 28) Then GoSub 1030
If RM = 28 And OB = 25 And FArray(25) = 0 And C(18) = 1 Then FArray(25) = 1: RArray(RM) = "SEW":
DArray(RM) = "HUGE OPEN DOOR": M$ = "THE KEY TURNS"
Return
1490:
Rem VERB 24
If C(OB) = 1 Then C(OB) = 0: LArray(OB) = RM: M$ = "DONE"
Return
1510:
Rem VERB 25
S = 0
For I = 1 To G
If C(I) = 1 Then S = S + 1
Next I
If S = 17 And C(15) <> 1 And RM <> 57 Then AddString = AddString & vbCrLf & "YOU HAVE EVERYTHING":
AddString = AddString & vbCrLf & "RETURN TO THE GATE FOR FINAL SCORE"
If S = 17 And RM = 57 Then AddString = AddString & vbCrLf & "DOUBLE SCORE FOR REACHING HERE!": S = S * 2
AddString = AddString & vbCrLf & "YOUR SCORE = " & S: If S > 18 Then AddString = AddString & vbCrLf &
"WELL DONE! YOU HAVE FINISHED THE GAME": End
Return
1590:
Return
Stampa:
'­­­­­­­­­­­ Stampa risultato del comando ­­­­­­­­­­­­­­­­­
Testo.Text = "YOUR LOCATION IS:"
Testo.Text = Testo.Text & vbCrLf & DArray(RM)
Testo.Text = Testo.Text & vbCrLf & vbCrLf & "POSSIBLE EXITS:" & vbCrLf
For I = 1 To Len(RArray(RM))
 Testo.Text = Testo.Text & Mid$(RArray(RM), I, 1) & ","
Next I
Testo.Text = Testo.Text & vbCrLf
For I = 1 To G
 If LArray(I) = RM And FArray(I) = 0 Then Testo.Text = Testo.Text & "YOU CAN SEE " & OArray(I) & "
HERE"
Next I
Testo.Text = Testo.Text & vbCrLf & "========================="
If AddString <> "" Then
 Testo.Text = Testo.Text & vbCrLf & AddString
 AddString = ""
Else
 Testo.Text = Testo.Text & vbCrLf & M$
End If
Testo.Text = Testo.Text & vbCrLf & vbCrLf & "What is your next move?"
InputString.Text = ""
InputString.SetFocus
End Sub
Private Sub Command1_Click()
About.Show
End Sub
Private Sub Form_Load()
'Load parameters

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 41 of 64

SOFTWARE

V = 25: W = 36: G = 18
LArray = Array(0, 46, 38, 35, 50, 13, 18, 28, 42, 10, 25, 26, 4, 2, 7, 47, 60, 43, 32)
Varray = Array("", "HELP", "CARRYING", "GO", "N", "S", "W", "E", "U", "D", "GET", "TAKE", "OPEN",
"EXAMINE", "READ", "SAY", "DIG", "SWING", "CLIMB", "LIGHT", "UNLIGHT", "SPRAY", "USE", "UNLOCK",
"LEAVE", "SCORE")
RArray = Array("SE", "WE", "WE", "SWE", "WE", "WE", "SWE", "WS", "NS", "SE", "WE", "NW", "SE", "W",
"NE", "NSW", "NS", "NS", "SE", "WE", "NWUD", "SE", "WSUD", "NS", "N", "NS", "NSE", "WE", "WE", "NSW",
"NS", "NS", "S", "NSE", "NSW", "S", "NSUD", "N", "N", "NS", "NE", "NW", "NE", "W", "NSE", "WE", "W",
"NS", "SE", "NSW", "E", "WE", "NW", "S", "SW", "NW", "NE", "NWE", "WE", "WE", "WE", "NWE", "NWE", "W")
DArray = Array("DARK CORNER", "OVERGROWN GARDEN", "BY LARGE WOODPILE", "YARD BY RUBBISH", "WEEDPATCH",
"FOREST", "THICK FOREST", "BLASTED TREE", "CORNER OF HOUSE", "ENTRANCE TO KITCHEN", "KITCHEN AND GRIMEY
COOKER", "SCULLERY DOOR", " ROOM WITH INCHES OF DUST", "REAR TURRET ROOM", "CLEARING BY HOUSE", "PATH",
"SIDE OF HOUSE", _
"BACK OF HALLWAY", "DARK ALCOVE", "SMALL DARK ROOM", "BOTTOM OF SPIRAL STAIRCASE", "WIDE PASSAGE",
"SLIPPERY STEPS", "CLIFFTOP", "NEAR CRUMBLING WALL", "GLOOMY PASSAGE", "POOL OF LIGHT", "IMPRESSIVE
VAULTED HALLWAY", "HALL BY THICK WOODEN DOOR", "TROPHY ROOM", "CELLAR WITH BARRED WINDOW", "CLIFF PATH",
" CUPBOARD WITH HANGING COAT", _
"FRONT HALL", "SITTING ROOM", "SECRET ROOM", "STEEP MARBLE STAIRS", "DINING ROOM", "DEEP CELLAR WITH
COFFIN", "CLIFF PATH", "CLOSET", "FRONT LOBBY", "LIBRARY OF EVIL BOOKS", "STUDY WITH DESK AND HOLE IN
WALL", "WEIRD COBWEBBY ROOM", "VERY COLD CHAMBER", "SPOOKY ROOM", "CLIFF PATH BY MARSH", "RUBBLE­STREWN
VERANDAH", "FRONT PORCH", _
"FRONT TOWER", "SLOPING CORRIDOR", "UPPER GALLERY", "MARSH BY WALL", "MARSH", "SOGGY PATH", "BY TWISTED
RAILING", "PATH THROUGH IRON GATE", "BY RAILINGS", "BENEATH FRONT TOWER", "DEBRIS FROM CRUMBLING
FACADE", "LARGE FALLEN BRICKWORK", "ROTTING STONE ARCH", "CRUMBLING CLIFFTOP")
OArray = Array("", "PAINTING", "RING", "MAGIC SPELLS", "GOBLET", "SCROLL", "COINS", "STATUE",
"CANDLESTICK", "MATCHES", "VACUUM", "BATTERIES", "SHOVEL", "AXE", "ROPE", "BOAT", "AEROSOL", "CANDLE",
"KEY", "NORTH", "SOUTH", "WEST", "EAST", "UP", "DOWN", "DOOR", "BATS", "GHOSTS", "DRAWER", "DESK",
"COAT", "RUBBISH", "COFFIN", "BOOKS", "XZANFAR", "WALL", "SPELLS")
FArray = Array(0,
0,
0, 0, 0, 0, 0, 0, 0, 0, 0)
FArray(18) = 1: FArray(17) = 1: FArray(2) = 1: FArray(26) = 1: FArray(28) = 1: FArray(23) = 1: LL = 60:
RM = 57: M$ = "OK"
Testo.Text = "YOUR LOCATION IS:"
Testo.Text = Testo.Text & vbCrLf & DArray(RM)
Testo.Text = Testo.Text & vbCrLf & vbCrLf & "POSSIBLE EXITS:" & vbCrLf
For I = 1 To Len(RArray(RM))
 Testo.Text = Testo.Text & Mid$(RArray(RM), I, 1) & ","
Next I
Testo.Text = Testo.Text & vbCrLf
For I = 1 To G
If LArray(I) = RM And FArray(I) = 0 Then Testo.Text = Testo.Text & "YOU CAN SEE " & OArray(I) & " HERE"
Next I
Testo.Text = Testo.Text & vbCrLf & "========================="
Testo.Text = Testo.Text & vbCrLf & M$
Testo.Text = Testo.Text & vbCrLf & vbCrLf & "What is your next move?"
M$ = "WHAT"
InputString.Text = ""
End Sub
Private Sub InputString_KeyPress(KeyAscii As Integer)
If KeyAscii = 13 Then
 Call Command_Check_Click
End If
End Sub

Page 42 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

SOFTWARE

In the 4th part of the Tutorial about how to develop a

game entirely in BASIC V2, which you find on the group

RetroProgramming Italia – RP Italia, Felice Nardella has

inserted a very useful Table that, for convenience, we

attach to this article (Fig. 1).

The Table shows the keys – or combination of keys –

corresponding to the 5 switches of the Joystick connected

to Control Port 1 or 2 of the C64.

The 5 switches are the 4 directions of movement (North,

South, East, West) and the Fire Button.

The purpose of this trick is to completely disable the use

of these keys in programs that manage movements through

the Joystick.

Let's start by saying that the first operation to be done is

to disable the scanning of the keyboard, which usually

takes place every 1/60 seconds.

Keyboard scanning, as well as cursor blinking management

as well as updating the so-called Jiffy Clock, the precise

C64 software clock per second (the Reserved Variables

TI and TI$, of THE BASIC V2, refer to the Jiffy Clock), are

managed through an Interrupt Routine.

To generate (“trigger”) the Interrupt is a 16-bit counter,

called Timer A, which constitutes one of the 5 Interrupt

sources of one of the 2 CIAs – the CIA #1 – acronym for

Complex Interface Adapter (6526), the specialized chips

assigned to the interview with the I/O peripherals, that

is, Input/Output.

CIA chip #1 is connected, via an IRQ type line, to Pin 3 of

CPU 6510.

IRQ stands for Interrupt ReQuest and is one of the 2 types

of Interrupt Hardware covered by the C64 architecture.

The other Interrupt Hardware is the NMI acronym for Non-

Maskable Interrupt; CIA #2 is connected, via an NMI line,

to Pin 4 of the 6510 microprocessor.

The 5 Interrupt sources of CIA # 1 can be detected via

one of the 16 internal chip registers, the Interrupt Control

Register (CIAICR) outlined in Fig. 2.

The Interrupt Control Register is mapped in memory to

location 56333 ($DC0D).

To disable an Interrupt source, we will set the high bit of

the Registry (bit number 7; bit value 128) to 0 (i.e. reset)

and write a 1 in the bit corresponding to the Interrupt that

we intend to disable.

In this specific case, our purpose is to disable the generation

of the IRQ Interrupt by Timer A, which in Register 56333

is controlled by bit 0.

Then you must use the following statement:

poke 56333.1

Let's briefly remember that Timer A counts down from a

default start value – called LATCH VALUE – up to 0. When

it reaches 0, if the corresponding bit in the aforementioned

Registry is enabled, the Interrupt request will be generated.

By default CIA # 1, as mentioned, generates an IRQ

Interrupt (via Timer A) 60 times per second.

Before leaving the program we will need to remember to

re-enable Timer A (and ultimately re-enable keyboard

scanning) by typing a 1 in CIAICR bit 7 and, again, a 1 in

bit 0 that represents our Interrupt source: poke 56333,129

Changing the value contained in the Interrupt Control

Register is not yet sufficient to achieve our purpose, namely

to ensure that the user cannot use the combinations of

keys alternative to the movements of the Joystick connected

to one of the 2 Control Ports of the C64.

The 64 physical keys of the Commodore 64 are contained

in an array of 8 rows for 8 columns, i.e. the Keyboard Matrix

(See Fig. 3).

The Keyboard Matrix is connected to the CIA #1 via 2 of

its 16 internal registers: Data Port Register A mapped to

C64: How to disable the keys corresponding to joystick switches
by Attilio Capuozzo Founder of RetroProgramming Italia – RP Italia

Figure 1

Figure 2

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 43 of 64

SOFTWARE

address 56320 ($DC00) and Data Port Register B

corresponding to memory location 56321 ($DC01).

Actually, the physical keys of a C64 are 66 in all; the

Keyboard Matrix lacks the SHIFT LOCK key that does not

need to be detected as it is replaced by the normal left

SHIFT, the LEFT SHIFT (whose pressure it simulates), and

the RESET key whose pressure generates an NMI type

Interrupt.

The 56320 Registry (Data Port A) is used for writing to

select the Columns to be read from the Keyboard Matrix

while the 56321 Registry (Data Port B), used for reading,

is used to read the Matrix Rows for the Column previously

selected through the Data Port Register A.

Just to complicate the life of us C64 RetroProgrammers,

the same Registers store - in the first 5 bits - the values

corresponding to the 5 switches of the Joystick as well

described by the aforementioned Tutorial by Felice Nardella.

So when we go to read the contents of one of the 2

aforementioned Registers we will have no way of knowing

if the bits of the Registers have been modified by the

Joystick movement (and/or by pressing the Fire Button)

or by pressing 1 key (or a combination of keys) simulating

the 5 switches of the Joystick.

In order to be sure to read, in one of the 2 Data Port

Registers, a value that comes from the Joystick, we only

have to write in advance in the 56320 Register (the Data

Port Register used, as mentioned, in writing) a 1 in its 8

bits corresponding to the 8 Columns of the Keyboard

Matrix. In fact, writing 1 in the bits of the 56320 Registry

will ignore the reading of the corresponding Columns of

the KeyBoard Matrix (the opposite effect is obtained by

setting the bits of the Registry to 0).

In BASIC V2, therefore, we will type the following statement:

poke 56320,255

Ultimately, the 2 instructions that will be executed before

the next readings of one of the 2 Control Ports to which

the Joystick is connected (Register 56320 = Control Port

2 or Register 56321 = Control Port 1) are the following:

poke 56333.1:poke 56320.255

We have finally achieved our long-awaited goal!

That's all folks!

Figure 3

If you want to join RetroProgramming Italia - RP
Italia group:

https://www.facebook.com/groups/retroprogramming/

Page 44 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

SOFTWARE

This article first appeared on Bitplane pages in May 2013.

MATRICES, CONDITIONAL INSTRUCTIONS AND
PROCEDURES

After learning in the previous tutorial how to work with

strings or, rather, how powerful the string management

instructions are in ARexx, let's go into the details of

procedures, matrices and, above all, conditional instructions.

PROCEDURES

Unlike other languages (e.g. Pascal), where the difference

between functions and procedures is strictly and syntactically

formal (as well as conceptual), ARexx handles subprograms

very easily. From the beginning, in fact, both the author

of the language and the community of developers preferred

the simplicity of use and ease of reading to the formal

complexity of structured languages.

Without wanting to go too far into the theory, we will simply

remember that, while a procedure generally aims to perform

actions/operations, a function "returns" a result. In other

words: a procedure is usually invoked simply by writing

its name, while a function (returning a result) is assigned

to a variable.

For our purposes, it is sufficient to know that ARexx

subprograms are invoked with the command "CALL

subprogram_name (expression,...)".

The list of parameters in parentheses has no length

limitations and is evaluated from left to right. If our

subprogram is actually a function, then the last expression

might be the variable that contains the final result. In this

case, it might be more convenient (and conceptually

correct) to use the following syntax: "result =

subprogram_name (expression,...)".

As seen in the previous issue of the magazine, the subroutine

is identified by an initial "label" that acts both as the name

of the subprogram and as the logical reference address

to be invoked by the main code and ends with the "return"

statement:

; call example
pull phrase ; reads the variable "phrase"
in input
call Parser (phrase) ;call the subprogram

"Parser" passing the variable "phrase"

; subprogram structure
Parser:
statement 1 ;these instructions
use the content of "phrase"
.....
instruction n
return

Having said that, we will henceforth use the generic term

'subprogram' for simplicity, avoiding, if possible, the term

'procedure'. The reason is this: as we know, in ARexx the

variables are all "global" and you do not need to declare

a variable before using it. Nonetheless, the variables used

within a subprogram are generally known only to the

calling process. To change the scope of visibility of a

variable, the reserved word "PROCEDURE" was then added

to the language.

This statement can be used within a procedure to make

certain variables "unknown" to the rest of the code.

“PROCEDURE”, however, can also be used, in conjunction

with "EXPOSE", to modify this behavior. Before looking at

an example, let's introduce another topic: matrices.

MATRICES

We have just mentioned that in ARexx neither the explicit

declaration nor the initial assignment of values is necessary.

However, we must remember that if the variable is not

initialized, it will contain the character (s) that make up

its symbol, transformed into uppercase letters. In other

words, the value of the variable "amiga" will initially be

"AMIGA". This type of variable is called "simple". A variable

can also be a compound variable, such as "amiga.2000".

An introduction to ARexx – part 3

by Gianluca Girelli

ENGINE (GAME)

The graphics engine is the software core of a video

game or any other application with real-time

graphics.

It provides basic technologies, simplifies

development, and often allows the game to run on

different platforms such as consoles or operating

systems for personal computers. Basic functionality

typically provided by a graphics engine includes a

rendering engine ("renderer") for 2D and 3D

graphics, a physical engine or collision detector,

sound, scripting, animations, artificial intelligence,

networking, and scene-graph.

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 45 of 64

SOFTWARE

In this case, the beginning part is called "stem" and

includes the variable name up to the dot (included), while

the rest of the variable is called "node". An uninitialized

compound variable contains the value of its node. In other

words, if not initialized, "amiga.2000" will initially contain

the value "2000".

One interesting thing about composite variables is that if

the stem is initialized with a given value, all possible

compound variables that begin with that stem will have

the same value. That is, if to "amiga." I assign the "mythical"

value, even the variables

"amiga.500","amiga.1200","amiga.3000"e"amiga.4000"

will contain "mythical. "

It is evident the enormous potential, even conceptual,

that this type of initialization has compared to the traditional

one. Assuming you want to initialize a vector of 100

elements to zero, just do:

vector. = 0

instead of having to use the classic:

for i=1 to 100
vector.i = 0
next i

Surprises don't end there, though. Since the "node" of a

stem can also contain other dots (ex: a.b.c), the stem also

represents the name of the multidimensional matrix

associated with it. In this case, assuming you want to

initialize a two-dimensional array of 100x100 elements

to zero, the operation:

matrix. = 0

is equivalent to:

for x=1 to 100
for y=1 to 100

array.x.y=0
next y
next x

Does anyone still have doubts about the power of ARexx?

At this point, after talking about subprograms and simple

and composite variables, it will be clear how the following

code works:

/* this is the main program */
j=1; x.1= 'a'
call some_variables
say j k m /* will display "1 7 M" */
exit

/* this is a subprogram */
some_variables: procedure exposed j k x.j
say j k x.j /* will display "1 K a" */
k=7; m=3 /* note that "m" is not exposed */
return

Please note the call to the subroutine "some_variables",

the implicit initialization of simple and compound variables,

the use of the stem as well as that of the instructions

"PROCEDURE" and "EXPOSE".

CONDITIONAL INSTRUCTIONS AND ITERATIVE CYCLES

Let’s now close the present tutorial with a summary of

conditional instructions (already introduced in the previous

issue with some examples of syntax analyzers) and iterative

cycles.

Like all the more advanced languages, ARexx implements

constructs for iterating statements, but instead of having

different types of statements, it uses the following syntax:

DO [repeater][condition];
[instruction list]
END

where:

- "repeater" can be: FOREVER, a single expression (to be

evaluated) or a complex expression in the form "name=espr1

[TO espr2][BY espr3][FOR espr4]”;

- "condition" can be: [WHILE esprA] or [UNTIL esprB];

- and "instruction list" can be any sequence of language

instructions.

With regard to conditional constructs, they are presented

in the following forms:

Porting

Porting indicates in computer science a process of

transposition, sometimes even with modifications, of

a software component aimed at allowing its use in a

different execution environment from the original

one.

Two activities linked to but distinct from porting are

emulation and cross-compilation.

Page 46 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

SOFTWARE

IF expression[;] THEN[;] statement [ELSE[;]
statement]

or:

SELECT when_list [OTHERWISE[;][instruction_list]]
END;

where:

- "when_list" is composed of one or more constructs in the

form "WHEN expression[;] THEN[;] instruction";

- and "instruction list" can be any sequence of language

instructions.

In the code snippet below you can see the use of the just-

mentioned constructs as used in the textual adventure

"cyber.rexx", written for educational purposes by the author

of this article. To introduce its scope, this is the subprogram

that manages "navigation" within the game world, for the

sake of simplicity implemented as a two-dimensional matrix

of "X" rows and "Y" columns.

We have so clarified how the navigation works: we modifiy

X,Y coordinates according to the desired destination. As

an example, “go east" means moving one location to the

right and it translates into the statement y=y+1 (while x

remains untouched).

== = ====== = taken from cyber.rexx == ==============
Go:
if find(Situation.5 7.Pos,name)>0 then say ‘you
can't go '|| name
else do
select
when name='NORTH' then x=x­1
when name='SOUTH' then x=x+1
when name='EAST' then y=y+1
when name='WEST' then y=y­1
when name='UP' then x=x­1
when name='DOWN' then x=x+1
otherwise say ‘I don't understand. Try again’;
say; return
end
Pos=(x­1)*maxcol+y
do i=1 to 6
if Situation.i.Pos~='' then say Situation.i.Pos
end
end
return

===

CONCLUSIONS
At the end of this first block of three tutorials, we should

have achieved all the knowledge needed to write our first,

truly complex program. In the near future, also thanks to

the article published in issue 17 and related to "Game

Coding", we will start building a game "engine" [BOX] for

textual adventures. Although ARexx was born as a "scripting"

program, the code will be written with the most modern

programming paradigms in mind, in order to facilitate the

eventual "port" [BOX] in other languages.

Further insights into the use and syntax of ARexx can be

found in the texts quoted in the literature.

So don't miss the next round of articles: "Game Coding

with ARexx".

BIBLIOGRAPHY

- Mike Cowlishaw "The REXX Language: A Practical

Approach to Programming" (1985) Prentice Hall.

ISBN 0-13-780651-5.

- Chris Zamara, Nick Sullivan "Using Arexx on the

Amiga" (1991) Abacus Software Inc. ISBN 1-55755-

114-6.

- AmigaOS 2.0 Manuale di sistema

- http://it.wikipedia.org/wiki/Game_engine

- http://it.wikipedia.org/wiki/Porting

Using the examples

As reported in previous articles, to use the examples

you have to save the script in text mode in the format

"name_script.rexx".

To launch the script just type from shell

">rx name_script.rexx"
or simply,

">rx name_script"

http://it.wikipedia.org/wiki/Game_engine
http://it.wikipedia.org/wiki/Porting

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 47 of 64

RETROHISTORY

There are important anniversaries that cannot be

overshadowed. Thirty years ago, it was October 15, 1990,

LucasFilm published The Secret of Monkey Island, a

point-and-click adventure by Ron Gilbert and other

developers who would then leave a mark in the industry

(see Tim Schafer and Dave Grossman).

This is a game that, in its four diskettes of the Amiga

version but also in its Pc edition, has entered history for

many reasons. Starting with the crazy protagonist, that

Guybrush Threepwood who carelessly wanted to become

a fearsome pirate but who – punctually – was mocked by

everyone. Yelled in every way and made fun of both the

old merchant and the guardian of the island of Melée (the

fairytale island in the depths of the Caribbean that serves

as the background to the first part of the game) who thanks

to his falcon view like Mr. Magoo was able to immediately

recognize the person in front of him apostrophe with a

"Hello dandy”! Not to mention the music. Plenty of

atmosphere and catchy to the very strange dialogues,

puzzles, duels and various things.

But, you may wonder, what does The Secret of Monkey

Island have to do with a Halloween issue? We'll give you

the answer immediately. Apart from the importance and

weight of this absolute masterpiece, in fact, the game has

some of its horror moments. Be it, of course, mitigated by

a lot of humor: “No animal was harmed during the production

of this game," one reads in a warning.

Remember the splatter scene where the antagonist of the

series, ghost pirate LeChuck, dismembers the body of

Sheriff Fester Shinetop whose looks he took to get rid of

our “hero”? Well, if that's not horror. In addition, although

in a comical and very light way, there is a lot of talk of

voodoo. And that's how our blond hero manages to take

the rampaging ship to Monkey Island despite the crew's

very nice self-mutiny. We certainly do not explain how:

the older ones will remember it, the younger ones will be

able to play it and have fun.

There is also a troll... or something like that that hinders

us and does not let us cross the bridge, except to keep us

going after a "lavish” meal.

What about cannibals? They're usually to be feared. And

of course: they are ruthless, fierce enemies, who eat other

human beings. But in The Secret of Monkey Island we find

them healthy and attentive to salt and cholesterol.

Commendable. However, our Guybrush will also have to

face a hellish labyrinth but to overcome it he will need a

Happy Birthday Monkey Island!
by Edoardo “Edward Scissorhands” Ullo

Page 48 of 64 RETROMAGAZINE WORLD YEAR 1 - ISSUE 4

RETROHISTORY

special compass: the navigator's head. It is the only one

able to find its way in this Dante Alighieri’s maze where

mushrooms grow. This is truly a talking head kept alive

by a special magic of Monkey Island cannibals.

What's next? Another potentially horrendous nuance is

undoubtedly the one you experience in the passage where

you arrive at the pirate ghost ship LeChuck to save Elaine

Marley making in spite to a party crew. You have to become

invisible to rip off these undead pirates so lucky to have

met LeChuck alive that he killed them and enlisted them

as undead.

In short, everything that traditionally should be on

Halloween: ghosts, cannibals, a talking head, voodoo magic.

Ingredients that if mixed together would logically result

in afirst-rate horror game or production. In The Secret of

Monkey Island, on the other hand, we find them mixed

with irony and carefree.

What’s the success due to? Super writing, fantastic, brilliant

dialogues, written with both heart and head.

This is the prototype of the perfect point-and-click

adventure, at least for productions from the early 1990s.

The sequel is equally spectacular and more long-lasting

but perhaps has a little less charisma than its predecessor

we celebrate in our Halloween issue.

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 49 of 64

GAME TESTING

In my last review, I talked about a

revived passion for 16-bit

consoles, so I want to present

another title for Supernintendo

discovered a little by chance: I'm

talking about True Lies.

The game was released by Acclaim

Entertainment in 1994, in

conjunction with the release of the

homonymous movie starring

Arnold Schwarzenegger.

In fact, our hero Harry Tasker looks

like the legendary American actor

and our adventure follows, level by

level, the plot of the movie.

From a graphic point of view, it is a

top down game, with the classic

isometric view from above that

resembles both The Chaos Engine

and Shadowrun.

At the beginning of each mission

we are armed only with a gun but

during our adventure we can also

collect a pump rifle, a machine

gun, a flamethrower, grenades and

anti-personnel mines and we can

easily switch from one weapon to

another with a simple button.

In addition to weapons, we can

also collect ammunition, keys to

open hidden passageways and first

aid boxes to recharge our energy.

With another key instead we can

make a leap forward to escape the

bullets or to find ourselves face to

face with the enemy.

During our journey it is easy to

encounter civilians who are often

on our line of fire and who we

absolutely must try not to hit. In

fact, after three civilians were

killed, we lost our lives.

The graphics are well cared for

with colourful sprites and always

new and varied settings. The many

explosions are amazing as well.

Levels are very long, deep and rich

in detail and perhaps, being nine

plus a bonus, in the long run they

could be a bit repetitive.

Nothing to say even on the sound

compartment with listenable and

different music for every level and

effects always appropriate.

To enrich everything there are

screenshots of the film, naturally

pixelated, which introduce the

theme of each mission.

In conclusion, if you do not know

this title I strongly recommend you

rediscover it. Moving our Schwarzy

through bullets, explosions and

various ambushes is really fun and

we find ourselves immersed in a

gaming experience that has not

been replicated in other titles of

this kind for the SuperNintendo.

by Querino Ialongo

TRUE LIES
Year: 1994

Publisher: Acclaim

Platform: Snes

Genere: Platform

» Gameplay 90%
Compared to the megadrive
conversion, this one for super
nintendo has controls that
respond impeccably, offering a
really fun gaming experience.

» Longevity 80%
It takes several hours to finish this
title and maybe nine levels, plus a
bonus, are a bit too much and
they could result repetitive for
some people.

OUR FINAL SCORE

Page 50 of 64 RETROMAGAZINE WORLD YEAR 1 ­ ISSUE 4

GAME TESTING

Nobody believes Billy Masters.

A 16-year-old American in the 80s

and 90s accused of taking drugs in

high school and slandering his teacher

for serious crimes.

Tired of his outrageous attitude, his

parents imposed the most complete

curfew on him until he apologizes to

his teacher.

Problem is, his teacher is a real

psychopath and he's up to something

in the neighborhood.

Billy's in the corner, and he's gonna

do everything he can to make his

case... Until it's clear that Billy Masters

was right.

What a great game! Perhaps not a

masterpiece, but a breath of fresh air

(which then so fresh, it recalls the

good old days) between the incredible

fps, rpg and ultra-technological

partners made of absurd framerate

and 4k.

Are you really having fun with these

numbers? Are you really interested in

knowing if having fun is at 60 fps or

less? All right, let's just drop it and

get back to the game.

Billy Masters Was Right is a short

adventure game in the Maniac Mansion

graphic style and a plot inspired by

films such as "The Burbs" or

"Disturbia".

The atmosphere of the game is a

mixture of nostalgia of the 80s, classic

suspicion films of the same period

and a teenage movie.

Classic point-and-click that recalls

the system designed for Maniac

Mansion by Lucas Film and I must say

that it still works perfectly.

Funny, never trivial, well matched in

puzzles... irreverent in dialogues and

plot and in some places even

disconcerting (a cartoon graphic with

very strong themes, resounding!).

Nice technical realization that catapults

us on a Commodore 64 of the times

of Maniac Mansion, but fast and precise.

The strength for me is instead a

soundtrack suitable for gaming

opportunities, it really got me involved.

Unfortunately, it is neither long nor

impossible, but it will take you a few

hours to play.

Find it free on the developer's website:

https://postmoderdventures.itch.io/

billy

or by giving a small amount to the

programmer.

Available for Windows in English,

Spanish, Catalan and German (locations

are great).

This Halloween upload this game and

remember that... Billy was right!

by Carlo N. Del Mar Pirazzini

BILLY MASTERS
WAS RIGHT

Year: 2020

Developer: Paco Garcia

Genre: Point-and-click

adventure

Platform: Windows

» Gameplay 80%
A well proven point and click

game which reminds of Maniac

Mansion.

Well structured plot, good

puzzles. Beautiful.

» Longevity 60%
Not very long unfortunately, but

fun. Passed with full marks.

OUR FINAL SCORE

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 51 of 64

GAME TESTING

"Captain's log - February 13, 2061 -

PROMETHEUS research spacecraft.

The mission funded by the Science

System Foundation was a failure.

Experiments to create "super men"

with extraordinary physical abilities

have been a complete failure. How

could I have agreed to be a part of

this crap?

The passage of corporations in the

name of power and money created

monsters. We're all dying and... in the

silence of these walls no one can hear

us, but we hear them and their claws.

Here they are, they're coming in..."

This could be the start of Project

Firestart, set aboard the abandoned

Prometheus and full of corpses. The

lead agent, Jon, will move within the

facility trying to figure out what

happened through the logs, trying to

save the only survivor and run away

before detonating it.

An incredible plot for an incredible

game, often forgotten but which really

opened a genre years before Resident

Evil or Silent Hill.

Project Firestart is an action game

with pseudo 3D isometric graphics.

The spacecraft consists of several

rooms, fixed and sliding. Our hero can

move freely on the ship and with the

possibility of defending himself with

a very effective laser gun but with a

limited number of ammunition available.

Some terminals that can be

encountered during the game contain

diaries and staff journals of the

Prometheus, through which the player

will learn what happened inside the

spaceship. You can also find some

objects that can recharge the

character's energy or provide new

ammunition or other objects useful

for resolving the game.

Occasionally, following a player action

or at predetermined points, the game

pauses to show the player a screen

showing the protagonist, another

character or one of the monsters,

giving the player the opportunity to

better see their appearance.

As we said, Project Firestart is an

action video game created on

Commodore 64.

It was designed by Jeff Tunnell and

PROJECT
FIRESTART

Year: 1989

Developer: Dynamix

Publisher: Electronics Arts

Genre: Action/adventure/

survival horror

Platform: Commodore 64

Page 52 of 64 RETROMAGAZINE WORLD YEAR 1 ­ ISSUE 4

GAME TESTING

Damon Slye and published by Electronic

Arts in 1989.

To all intents and purposes it is to be

considered the first example of survival

horror with multiple endings, conceived

ten years before the most famous games

of the genre.

The gloomy atmosphere, the feeling

that the enemy is hiding around every

corner and that sense of powerlessness

when you're out of ammunition made

it fast at the time and gave it a halo of

mystical mystery. The magazines praised

him for the concept and for the game

system, the players were astonished at

the realization but then complained

about the anomalous difficulty and a

totally different approach.

Graphically stunning, varied and made

with this isometric graphic that gave

the player ample breath, something

unprecedented in other titles. A title

that reminded us of the atmospheres

of horror films and skis of the time (Alien

above all, but above all the thing).

Players of the time were not accustomed

to alien enemies so disgusting and

leathery compared to the standard.

Difficult, violent, distressing...

Beautiful.

A real killer application for Commodore

64. Never been out for other systems,

envied by owners of more powerful

machines.

Try it locked in your room... With only

the C64 on, your joystick and the silence

of the space station where...

No one will hear you scream.

by Carlo N. Del Mar Pirazzini

» Gameplay 85%
Difficult and not suitable for

classic arcade "purists". Once

inside the game you will not be

able to stop easily.

» Longevity 85%
The Prometheus will not be

released in a moment. Many

hours of play.

OUR FINAL SCORE

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 53 of 64

GAME TESTING

"Mariooooooooo..... Mario! "

How many times by pressing the A

button of the Cube did we make Luigi

repeat this sentence? Me very often.

Luigi's Mansion is a title conceived by

“Mamma” Nintendo that gave life to

a saga very often underestimated, but

with an appeal, a style and an excellent

gameplay. This first chapter was

released in 2001 (2002 in Italy) as

the first title for the newborn Game

Cube.

It's part of the big series of titles

devoted to Mario and it had a remake

on DS and a beautiful third episode

on Switch.

Upon its release it was criticized by

magazines and game experts, who

superficially labeled the title "childish"

and simple. But everything improves

over time (wine, for example, ndN).

Let's go with order.

The game is fundamental to the history

of the brand, as not only valorizes a

character often in the background

compared to Mario; Luigi who becomes

an unexpected protagonist. This game

basically does two things: detaches

itself from the concept

of the series of a classic

platform and above all it

mimics the numerous

survival horrors that

prevailed in that

period.

An experiment never

attempted before by

Nintendo and that was

not understood by the

magazines. This is

something that should

be considered

innovative and

incredible!

Few people know,

however, that Luigi was

not the first time he put himself in the

role of the protagonist. Ten years

earlier, he starred in "Mario is Missing!"

The story is simple: Mario was

kidnapped by the Boo, the popular

ghosts of the series. For this

characteristic, in the wake of the

Ghostbusters' films, Luigi will find

himself facing them with a vacuum

cleaner and a Game Boy Horror with

the aim of exterminating the more

than 50 rooms of the haunted palace

to free up his brother after having

obviously defeated the evil King Boo,

the final boss. Each room contains

secrets, traps or moments of fear (up

to a certain point, ndN).

It is in the gameplay that this first

episode presented itself as various

and original, with ideas that still make

it incredibly modern and never boring.

The same formula proved to be

successful and remained almost

identical in the new chapters. This is

an incredible strength. The use of the

wonderful Nintendo cube joypad is

masterful. The controls are very

comfortable and complete with the

balanced use of all the buttons and

LUIGI'S
MANSION

Year: 2001

Publisher: Nintendo

Developer: Nintendo

Genre: Survival Horror/Action

Platform: Game Cube

Page 54 of 64 RETROMAGAZINE WORLD YEAR 1 ­ ISSUE 4

GAME TESTING

the analogue stick.

As in the legendary Ghostbusters movie,

Luigi, rather than fighting or jumping

on his opponents, sucks them using

the Poltergust 3000, which sucks up

all sorts of ghosts, from simple generic

ghosts to those in "frames" that haunt

the house up to the most complicated

ghosts and the very fast Boo.

The use of the vacuum cleaner is not

limited to simple vacuuming, but you

can use the Poltergust to move objects,

suck in curtains and blankets, vacuum

coins, bonus objects and keys (essential

for opening rooms to explore).

The real strength of this chapter certainly

remains the use of the objects and

elements that serve our protagonist to

advance in the game and higher in the

villa. Starting with the simple vacuum

cleaner it can be leveraged with

extraordinary powers up to the Game

Boy Horror, a device that allows us to

observe the surrounding environment

and receive information on the objects

we encounter on our way; but also acts

as a map of the entire building, helping

the player by indicating the locked

rooms, those already completed and

those accessible (because we have

perhaps found a special key to access

them).

This particular object can also indicate

the presence of ghosts and even have

the function of inventory, indicating the

amount of money, gems, spectra that

we possess.

Critics, as we said, criticized the game

by branding it as a beautiful title but

"short and for kids".

Certainly the missions will not be billions

and it will certainly not take thousands

of hours to finish it, but it is a beautiful,

serene and relaxing game (despite the

ghosts).

Beautiful to play in front of TV in the

dark right on Halloween, maybe with

your son, a scaring ghost, and a

frightened face of Luigi laughing all

together at home. This makes it special

and, finally, the critics have reassessed it.

If it were an alcoholic it would be a good

brandy to enjoy calmly by the fire, but

it is a video game and it is well made,

playable and very beautiful to watch.

A perfect example of how Nintendo is

"different."

If you have a Game Cube, I can't not

recommend it, but it also runs in

emulation with the Dolphin.

You can find it in the remake version on

DS and on Nintendo stores.

I mean, play it!

by Carlo N. Del Mar Pirazzini

» Gameplay 95%
It is a well designed and

playable product. The

gameplay is well calibrated, the

story fast and captivating and

you will immediately feel

immersed in the mission in

search of Mario. Excellent the

use of the joypad.

» Longevity 80%
It is not an blockbuster, but it

is a title that will keep you busy

each time you take it off the

shelf and put it in the Game

Cube.

OUR FINAL SCORE

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 55 of 64

GAME TESTING

Those who owned a Commodore
Amiga in 1993 could not help but
add to their video game collection
this small masterpiece created by
those geniuses who had given
Europe (and the world) the
definitive football game: Sensible
Soccer.

The English coders had another
fantastic idea: to recruit thousands
of small men in delicate pixel-art
(as indeed were the players of
Sensible Soccer) and place them
in equally delicious scenarios
designed with a view from above
to make them become as the title
of the game says “cannon fodder”
or a goliardic and direct way to
make us try directly on our monitors
that the war had never really been
so fun "War has never been so
much fun".

Playability at the top within series
of missions of increasing difficulty
where obviously the purpose was

in most cases to
eliminate the enemy's
presence on the
territory (including
bases and military
installations) while
trying to lose as few
soldiers as possible
(the survivors were
increased from mission
to mission) brilliantly
using Commodore
Amiga's trusty mouse
as the only control
system.

The game was not
really a real-time
strategy (genre that
was born in those years
due to Dune 2 on
Amiga) but a lot of
quick strategy behind
our arcade actions
would still make the
difference between the
life and death of our

CANNON
FODDER

Year: 1993

Publisher: Sensible Software/

Virgin

Developer: Sensible Software

Genre: Shoot'em-up/Real-time

strategy

Platform: Amiga

Page 56 of 64 RETROMAGAZINE WORLD YEAR 1 ­ ISSUE 4

GAME TESTING

little digital soldiers.

A masterpiece of playability (and
game design) that contemplated
the use not only of standard firearms
but also rockets, tanks and
everything that could have been
useful to get to the promotion of
our troops avoiding making them
become small crosses scattered on
the hill where new resources were
recruited between one level and
another.

A masterpiece of game design that
pushed us to exploit the territory in
our favor.
In the jungle they could camouflage
us among the trees (but enemy
soldiers could also do it) while in
the Arctic areas we had to pay
attention to the ice without counting
the mines, the traps hidden in the
vegetation, and dozens of other
classy touches (such as the
possibility of injuring only the
enemies who then writhed and
screamed from pain waiting to be
finished).

That made the world of Cannon
Fodder an immersive and exciting
experience by treating a raw theme
like war in a detached and fun way
as it was actually announced in the
initial theme song composed and
sung by game designer Jon Hare or

the song "War has never been so
much fun", the icing on the cake for
a product really worthy of being
replayed again today.

by Flavio Soldani

» Gameplay 96%
A successful mix of real time

strategy and shooter, with so

many classy touches and a

playability so high that can

hand down win the challenge

with time.

» Longevity 95%
As said above Cannon Fodder

is a brilliant video game that,

along with many others, has

helped to fix in our hearts the

creativity that permeated the

early '90s by making us love

the Commodore Amiga

systems.

The game was then converted

on most of the platforms of the

time, had a sequel called

Cannon Fodder 2 and a 3D

remake not made by Sensible

Software in 2011 called

Cannon Fodder 3.

Unfortunately the sequels were

not able to reach the quality of

the first chapter.

OUR FINAL SCORE

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 57 of 64

GAME TESTING

"Do not be a magician - be magic!"

Leonard Cohen

Micro Mages for the Nintendo

Entertainment System, developed by

Morphat Games, is a vertical sliding

platform game that sees us as a

magician just arrived in an ancient

demonic fortress to save the princess

from the forces of evil.

The journey inside the fortress will

place our hero in pink tunic in front

of great treasures, horrible creatures

and deadly traps. Only thanks to his

magical skills and his climbing skills

the little magician can reach, with our

help, the top of the tower.

There are 4 towers to pass:

The Haunted Dungeon - an old lost

tower full of bats and skeletons and

where a huge ghost screams at its

victims to kill them.

Valhalla Tower - where the Goblins

are building a structure that leads to

Valhalla.

The Jungle Temple - built inside a

dormant volcano and ruled by the

Prince of Darkness... and finally

Last Tower - The last tower is the

somewhat mysterious headquarters

of the supreme evil that trapped the

princess.

The main mechanic of the game is to

cast spells against enemies with the

A key of the joypad and use the jump

(on the B key) to climb up to the top

of the various levels. The jumping

action on the wall is easy enough to

be performed thanks to responsive

controls and a perfect control of the

main character in every situation.

The level of challenge is quite various.

During the journey we will meet several

opponents and traps that will make

the game never boring and very

compelling. Initially we will only need

one shot to kill the opponents, but

increasing the levels we will face more

" coriaceous" opponents who will

need several shots.

During your exploration, you'll find

chests and treasures to help you. In

each box we will find several useful

bonuses like a fairy who will give us

a shield to protect from opponents

shots or a feather that will give us the

chance to fly… And much more.

Every 16,000 points (collected with

bonuses or destroying the enemies)

we will be awarded an extra life.

There are also checkpoints, as in any

respected platform, usually located

at the middle of the level and really

useful during the longest and most

complicated routes (the third world

for example).

The game also has a convenient

password system to save the location.

Passwords will be provided at the end

of each tower.

Once we reach the top of the towers

we’ll be faced by their big bosses.

MICRO MAGES Year: 2019

Developer: Morphcat Games

Genre: Platform

Platform: Nintendo NES

Page 58 of 64 RETROMAGAZINE WORLD YEAR 1 ­ ISSUE 4

GAME TESTING

Classic monsters which represents a

challenge that is not simple but even

not too difficult, once you have learned

the attack patterns.

This is a big plus. This well-balanced

difficulty makes Micro Mages a

compelling one.

There is also a multi-player mode, very

well implemented and quite fun. As long

as at least one player is alive, we won't

lose the character's life. Players killed

along the way will turn into ghosts with

the power to freeze opponents and help

survivors. They can also destroy crates

and scribes with the hope to find a fairy

or a bonus that will bring them back to

life.

As in the most classic platform of the

80s, once the a round is completed and

the final boss is defeated, it will be

possible to start over with an increased

level of difficulty.

What can I say? A new game, well

structured and with great level design

and perfect gameplay.

The graphic is impressive. Detailed,

animated with care (the little magician

is featured with incredible animations,

ndN) and everything moves smoothly.

A product that makes very good use of

the Nes's capabilities and that does not

even have a slowdown or flickering as

we often see in games for the 8-bit

Nintendo.

The soundtrack is simple and fits

perfectly to the game. Not obsessive

or repetitive, it serves as background

for the adventure.

Painful notes... Few, but there are. The

game is not impossible once you

understand the patterns of levels,

opponents and traps and only 4 worlds

seem too few. Too bad because with a

few more levels it would be the absolute

"masterpiece" of new productions for

the 8-bit NINTENDO.

The game is available in download on

Steam and Itch.Io and runs on all

emulators for the Nintendo console

(Mugen, Nostalgia...) but I recommend

you to do as I did: buy the cartridge

equipped with the manual and a very

well crafted package!

The cartridge can be ordered at:

https://www.brokestudio.fr/product/

micro-mages-nes/

by Carlo N. Del Mar Pirazzini

» Gameplay 90%
Smooth, dynamic and well

balanced. It won't bore you

and will keep you hooked to the

joypad to complete all the 4

worlds of the game.

» Longevity 65%
...4 Worlds that are a little bit

few and once you get the

patterns of opponents and the

logic of the puzzles it will be

easy and fast to finish the

game. Such a shame...

OUR FINAL SCORE

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 59 of 64

GAME TESTING

Hunting rifles, chainsaws and demons.

All this has been and is Doom, and

although this concept seems silly and

fanciful, it is actually one of the key

ingredients of this legend of video

games.

But why all this success?

In 1993, a number of controversial

titles had problems. Most parents and

trade associations fought the violence

in Mortal Kombat or the controversial

Wolfestein 3D (Doom's father). They

were the violent and bloody titles that

were on the market.

Did the controversy also break out on

Doom? Yes, but in smaller quantities.

The title was released on the shareware

market and also spread in the world

by fans word of mouth.

The trade associations were silenced

by the sales of the game and especially

by the players themselves! It was a

just niche product for the period.

Zero plot (okay, a little bit, ndN) and

is the protagonist relevant? Not even

a little.

Doomguy, our general space marine

was an example of experiential

storytelling, through the player himself

instead of simply being exposed to it.

Obviously, the element that made it

so engaging (in addition to the first-

person perspective) were its fantastic

visual effects, similar to a Brutal Death

Metal cover; they were banal but

fantastic ...And violent ...Oh, they were

ultra violent!!!

For a period of time, this pixelated

tribute to action and horror movies

has been the next generation of video

games. Every subsequent FPS game

on PC, console and even Amiga was

in the same style as Doom.

Despite his age, it is still exceptional.

The graphics appear realistic, almost

gritty, whether it is a simple wall or

an ultra-decorated surface with a

diabolical appearance.

The various levels of brightness give

rise to claustrophobic corridors, with

flickering or oscillating lights or even

black like pitch.

Movies like Alien were obviously key

influences, the main theme of the

franchise has always been inspired

by HR Giger, immoral marriage of meat

and machines and, like many great

previous games, level design is abstract

rather than realistic, and surprising

rather than trivial. The enemies look

fantastic, they have incredibly detailed

and gruesome death animations, and

because they are actually photographed

sculptures, they have an almost realistic

feeling. A heterogeneous group of

undead and demons that has become

almost iconic as the Goomba in Super

Mario Bros or the ghosts in PAC MAN.

Appearance is only part of the equation,

with the sound completing the package

in the best possible way.

In addition to a classic MIDI soundtrack

(remember MIDI?) inspired - and

slightly torn - by metal legends such

as Black Sabbath, Metallica, Megadeth

and Judas Priest, among others, as

well as some slower ambient and

mood-enhancing melodies such as

the cherry on the cake.

All the sound effects, from the powerful

explosions of weapons, to the screams

and growls of alarmed enemies, are

just perfect - and wait for a carnivorous

infernal bull made of steroids who

wants to finish you off! Hearing the

echo of the roar of the gigantic

Cyberdemon; sounds like coupling

ferocity and pain.

But in all this pureness we find a stain,

a stain that, especially in these times,

DOOM
Year: 1993

Publisher: Id Software

Developer: Id Software

Platform: Pc MS DOS, Atari

Jaguar, Super Nintendo, Sega

Mega32x, Sega Saturn, Sony

Playstation, 3DO, Amiga.

Genre: FPS

Page 60 of 64 RETROMAGAZINE WORLD YEAR 1 ­ ISSUE 4

GAME TESTING

makes us understand the age of this

product. What is it? Well... Our hero

can't tie his shoes, look at the mouses...

I mean, he can't lower his eyes or even

raise them because three-dimensionality

was still “a Prototype" and not yet fully

implemented (it will arrive a few years

later with Quake and Descent).

That makes Doom old, makes it a

masterpiece from another era.

Where we haven't concerned by

photorealism, 60 fps, 4k/8k or ultra-

realistic engine.

We were just thinking of using chainsaws

to gut every Cacodemon in the world.

At the time of its release, Doom was

criticized arguing that it was a simple

game in which waves of enemies were

shot down; enemy after enemy. It was

far away from the truth.

This is not the usual Left for Dead, but

a game in which we will find a complex

design of fantastic levels, full of traps,

with intelligently positioned enemies,

tons of secrets and many situations in

which you will need to think to not being

slaughtered by demons.

The keyword when it comes to high-

level design is "balance." The enemy

count is high, but not so high as to make

repetitive firefights; there are many

traps, but they leave enough room for

the player to react and confront them;

ammunition is limited, but enough to

do the deed and, finally, while part of

the fun is trying to find a key to open a

door or a switch to lower an elevator,

it is managed in such a way that you

never feel bored, especially since every

time a key is collected, some areas will

be repopulated.

Over the years, fans of the saga have

created hundreds of maps, mods,

additional layers and systems to make

this product eternal. Some of these

products are incredibly manufactured

like Brutal Doom from which the series

restarted again.

It was just adrenaline! No regenerative

health, no guidance on where to go

next, no artificial intelligence with scripts

and no specific covers to hide behind

something.

Run like a madman between levels,

shoot down demons after demons,

collect useful objects.

This was DOOM and this is DOOM again.

by Carlo N. Del Mar Pirazzini

» Gameplay 95%
Immediate, intuitive, fast,

frenetic... Many weapons, levels

and hidden bonuses. Lets you

play and makes you play like

crazy.

» Longevity 95%
Many believe that Doom is just

a relic from the past; an

important relic, of course, but

nothing more. False! The

creation of Id Software is not

only pioneering, but also one of

the best video games ever

made; a brilliant work of a

company whose mentality was

practically quite similar to what

independent developers do

today. A game of players for

players. It's beautiful, it's fast,

it's deeply compelling,

immense in single and superb

in multiplayer.

It's Doom, and it's here to stay

until the Hell burns!

OUR FINAL SCORE

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 61 of 64

GAME TESTING

Welcome to this new episode dedidated

to Japan; according to our internal

"Halloween-calendar" it is the second

part of the 666th episode which

officially corresponds to the 14th

episode on Japan on RMW! Enjoy the

reading and when you have finished

reading the article, I hope you will

agree with my full belief that the review

of this video game is particularly

relevant to this special issue!

We are talking about a video game

inspired, indeed created, by the

sparkling mind of the famous "Beat

Takeshi" (two beats: in the sense of

the rhythm of comedy because at the

beginning he performed in comic

duets).

Takeshi Kitano is one of the world's

most famous film characters, especially

in Japan. He's a very authoritative

public figure. He's an actor, director,

screenwriter, editor, film producer,

television host, television author, radio

host, comedian, writer, painter, singer,

and video game author.

He is considered one of the most

important living oriental directors due

to the unmistakability of his style, the

radicality and innovative strength of

his filming. Often his movies are focused

on Japanese mafia (Yakuza), not always

appreciated or taken too seriously.

Given his fame, it was mandatory to

create a video game dedicated to his

interesting character.

Did I say video game? Or a nightmare

with open dreams? In any case, it is

present in the top ten of the worst

Japanese games.

In fact, the game has even won the

first prize as the worst game for

Nintendo FamiCom.

Some parts of the game are traced

back to the philosophy of his famous

TV show "Takeshi's Challenge" or

"Takeshi's Castle" known in Italy as

"Never Say Banzai", commented by

the great "Gialappa's Band".

https://youtu.be/kyLzDuAkqn8

https://youtu.be/8t2T4jGI6G0

https://youtu.be/tsuj4XkadUg

The program was animated by reckless

Japanese who were striving for

impossible, comic - unsafe challenges:

the ultimate goal was to conquer

Takeshi's virtual castle. This series

was a success, but the video game

inspired by Takeshi's works was very

problematic.

Back to the video game. At the dawn

of this story, Taito was licensed to

create a video game dedicated to

Takeshi's identity.

The problem is that Takeshi was

involved too much in the game

processing activity, leaving no room

for the video game maker experience:

a very dangerous choice!

It is said that Takeshi created the

whole plot of the game in one night,

at the bar, the famous Izakaya bars,

where a thousand colourful saucers

and glasses with surreal shapes and

contents mingle mercilessly inside

the stomach, causing bizarre and

unpredictable digestive as well as

psychosomatic alchemies.

Taito producers in the bar recorded

everything Takeshi proposed. Takeshi

wanted a completely different game

from the others of the time: he

succeeded perfectly in the intent,

unfortunately in the negative sense

of the phrase.

The presence of such a famous celebrity

would surely have sold infinite copies

of that video game, regardless of the

quality of the game itself. I assure you

that I possess it and that I love

retrogaming, but at the same time,

unfortunately, I too feel disgusted by

NINTENDO VS
TAKESHI

Year: 1986

Developer: Taito

Genre: Platform

Platform: Nintendo FamiCom

Page 62 of 64 RETROMAGAZINE WORLD YEAR 1 ­ ISSUE 4

GAME TESTING

this unfortunate work. It is useful to

remember that Takeshi hated electronics,

mobile phones, emails and his ideas

were always mixed in a bizarre

combination of tradition and madness.

Takeshi has really created an awkward

cartridge for Nintendo FamiCom.

Moreover, during the development of

the game, Takeshi was involved in an

extramarital scandal and ended up in

the papers.

The editor of the newspaper that

published the news was even beaten

by Takeshi himself (along with his

followers) during a violent rapture of

madness: from that day on the great

Takeshi who belonged to the historical

comedic duo "Beat Takeshi" was enriched

with the qualification of "Beat Takeshi"

in the sense of "to beat up".

Away from television for a few months,

he obviously returned more famous

than before and completed his unfinished

business, scheduling numerous future

engagements.

The game consists of a very simple

platform, with several elements and

bonuses to discover. In short, it is a

platform where you have to make the

classic decisions to advance at the level.

The music is frustrating, a loop without

harmony, not listenable at all. The

English translation, fortunately, is

excellent.

https://youtu.be/j_RH518LyOk

There are many peculiarities of the

game, I will not be able to list all of them

since I have played it three times and

I will certainly not play it again in the

future:

1) if you throw punches in the air 20,000

times on the title screen you get directly

to the end of the game

2) there are levels where you have to

attach the second pad equipped with

a microphone and sing like in the Karaoke

halls

3) we can divorce and/or beat the shit

out of wife and children (remember that

the game is officially released by

Nintendo!)

4) we can beat our employer

5) we can beat the cops and at the same

time be beaten by them, losing energy

6) we can beat everyone like crazy and

be hated by everyone and above all be

beaten by people who hate us

7) there are porn situations, you can

drink whiskey and play Pachinko

8) inside the Pachinko room we can

only advance to the next levels if we kill

the people who are beating us

9) we will be able to fly aircraft, even

an aeroplane, but it will not be able to

land and therefore we will crash to the

ground unnecessarily, resulting in game

over

10) the end of the game is a small

drawing with Takeshi's face that says

"congratulations"

11) plus numerous other strange things

that I absolutely do not want to remember

or describe...

It seems like a tragicomic, violent and

absurd work, created by a person who

hates video games: a logic typical of

Takeshi who really hates electronics

and video games.

Perhaps this logic was really wanted

by Takeshi, with a macabre conscience.

No one will ever know. No one will ask

Takeshi for an explanation. Few will

remember this troublesome game. I

think Nintendo is not even happy with

the presence of this article, patience,

I will try to make it up to you with a

letter of apology!

Even the creators of the "Strategy Guide"

to complete the game have “cold

sweated”, facing such an absurd,

irrational and illogical game.

If you will find this cartridge in Tokyo's

thrift stores, you absolutely must take

it, it is a collectible monstrosity, with

the consequent monstrous logic of

collecting prices. Unfortunately, the

manual is even rarer. I don't own it either.

Well dear readers, I very much hope

that this review has respected the

"horror" soul of Halloween, goodbye

to the next issue, I promise you that we

will return to normal talking about

Japanese madness!

by Michele "Conte Ugolino"

» Gameplay 1%
It's a traumatizing experience!

» Longevity 1%
You can't wait to turn off the

FamiCom!

OUR FINAL SCORE

RETROMAGAZINE WORLD YEAR 1 - ISSUE 4 Page 63 of 64

GAME TESTING

Another autumn although very

different and particular, another

Halloween coming up with some

last-minute limitations and another

review of a game in theme with the

Halloween night.

A Night that is perhaps one of the

few that makes you feel the spirit

and the greed; since every year

entertains many Europeans and

Americans and especially us, video

players, thanks to the horror titles

that were already popular on the

“breadbin” at the time. I had

played and tried many of them, but

one that struck me particularly,

especially for the soundtrack that

scared me, was Stormlord.

Even this game I discovered by

pure chance, assuming that case

exists, on a newsstand, whose

name I do not remember in Italian

(but I do the English one!).

After the welcome screen, the

game presents itself as a sliding

platform, in which you impersonate

an elderly warrior wizard who

jumps, fires flames and teleports

(and all despite his age).

The purpose of the game, as well

as to overcome each of the four

tough levels, is to free up the

imprisoned fairies and solving

puzzles with the right objects; for

example the key to open the doors,

honey moves the swarm of bees

etc...

Meanwhile dozens and dozens of

demonic creatures are ready to

block the way and make the game

even harder.

Fortunately, since the beginning we

have eight lives to complete the

entire game and, believe me, it will

not be a piece of cake, like most

games of the time (sorry if I'm a bit

repetitive).

At the end of each level there is a

bonus that will earn you several

points and perhaps even an extra

life.

It's up to you to find out what kind

of bonus it is and how to collect

points and lives and then move on

to the next level and free other

fairies: fairies that grow

numerically from level to level.

Completing your task will not be

easy; I remember perfectly those

hateful worms that came out of the

ground at the speed of light and

made me lose a third of the lives

and also some riddles solved in the

wrong way, which forced me to

start again since the very

beginning.

The game came out on different

platforms and by playing the

various versions I was able to make

a comparison of the graphic and

music; they are the two elements

that most characterise this game

and as always the music of the

Commodore 64 version is the best

one!

Stormlord also had a sequel very

similar to the first chapter but with

linear scrolling and end level

bossese; maybe it was not as

successful as the original one but it

was still worth our time and our

energy.

If you are forced to observe the

curfew on Witches' Night, get this

game together with many other

beautiful and ugly horrors that

have made the history of the C64

and be sure to turn off the lights!

Happy Halloween!

by Daniele Brahimi

STORMLORD
Year: 1989

Developer: Nick Jones,

Raffaele Cecco, Huges Binns

Platfom: Commodore 64

Genre: Platform

» Gameplay 60%
It's easy to die... But as soon as

you get used to...

» Longevity 70%
Only four levels? Play it, then you

will tell me!

OUR FINAL SCORE

Commodore 64 version

Amiga version

RetroMagazine World as an aperiodic magazine
entirely ad-free is a non-profit project and
falls off any commercial circuit. All the
published material is produced by the
respective authors and published thanks to
their authorization.

RetroMagazine World is licensed under the
terms of: Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA
4.0) https://creativecommons.org/licenses/
by-nc-sa/4.0/

This is a human-readable summary of (and
not a substitute for) the license. You are free to:

Share — copy and redistribute the
material in any medium or format

Adapt — remix, transform, and build
upon the material

The licensor cannot revoke these
freedoms as long as you follow the
license terms. Under the following terms:

Attribution — You must give appropriate
credit, provide a link to the license, and
indicate if changes were made. You may
do so in any reasonable manner, but not
in any way that suggests the licensor
endorses you or your use.

NonCommercial — You may not use the
material for commercial purposes.

ShareAlike — If you remix, transform, or
build upon the material, you must
distribute your contributions under the
same license as the original.

No additional restrictions — You may not
apply legal terms or technological
measures that legally restrict others from
doing anything the license permits.

Disclaimer
A few days ago we made an announcement on our official Facebook page to

celebrate the 100,000 downloads of all our publications.

Unfortunately, Facebook posts are rather termporary and disappear pretty

quickly, swallowed up by other posts and the frenzy with which we approach

the everyday news. Together with the entire editorial staff, we therefore felt

necessary to come back again on this subject and to Thank our readers once again!

Those who have been following us for some time may know that we do not

like to report numbers and statistics. We rather prefer the human aspect and

the emotions that we can arouse with our articles. Feedbacks and/or

compliments received for a particularly appreciated article, are our most

important award.

But this time I'd be lying if I say this number didn't make any sense to us.

This number, big, round, high-sounding, awakened our ego and... We wanted

to celebrate!

It is relevant to say that this number is only a part, certainly the largest, of

the absolute total. Some sites mirror our magazines and we have also found

some of them on archive.org. This is certainly another point of pride for all of us.

But let's stop talking about what we have achieved.

Reached objectives are already part of the past, while we, apart for computers :-

D, are always oriented towards the future!

During the last internal editorial staff meeting, we discussed many points that

we would like to complete in the near future. There are several projects we

hope to be able to announce very soon, but what we would like to see more

and more is the active participation of our readers with their contributions.

Now more than ever there are so many people working on projects dedicated

to retrocomputing. New hardware devices, emulators, games and programs

are released almost daily and it's hard to keep up with everything given their

amount and the speed at which they are announced.

If you, who are reading, are part of one of these projects, please contact us.

We would like to give everyone visibility and a voice.

As we have always said: RMW is your magazine!

Francesco Fiorentini

100,000 times, Thank You!

RetroMagazine World
Year 1 - Issue 4 - NOVEMBER 2020

Chief Editor
Francesco Fiorentini

Managing Editor
David La Monaca
Editing Manager

Marco Pistorio
Web Manager

Giorgio Balestrieri

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.it

	10 rem **********************************
	10 rem **********************************
	BIBLIOGRAPHY
	Using the examples

