

Page 2 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

The driving force of retrocomputing
The passion that we all share and call “retrocomputing” (including

perhaps not entirely rightly the term “retrogaming”), like any other

passion, leads us to spend a lot of time in the search for vintage

hardware, original games and software, old and modern accessories

and peripherals, bibliographic material, programming books and

magazines.

And yet, guided by this deep passion of ours, we sometimes employ

resources as precious as time to achieve what we personally (or

collectively) consider the Holy Grail of retrocomputing. It may be a

particular disk-drive, considered rare because few pieces have been put

on the market in the past, or a unique version of a chip, or even a home

computer with a low serial number on the original manufacturer's plate.

Whatever the object of desire, as for many other forms of collecting,

from the most moderate amateur up to the “serial hoarder”, the fact is

that we often find ourselves willing to open our wallets and spend lots

of money, paradoxically even more money than the initial market price.

To give you an example, the launch price in USA and Europe of a

“breadbin” C64 costed about half a salary of your father or even more,

do you remember that?* And today, in the summer of 2020, after

almost 40 years and despite the 17 million units sold worldwide, there

are people who ask and obtain amounts around 250-300 EUR for the

same model, if in good and working condition and possibly including

the original box. If you just make the conversion from EUR to your

national currency, you’ll get an amount not very far from the original

sale price of many years ago. And if we were talking about other

Commodore models (i.e. Amiga) or other brands less successful on the

market then and consequently less easy to find today, the prices of

classified retro-stuff would far exceed the original retail price.

So we are in presence of an upward price tendency that has kept going

on, especially in the last ten years, with a trend of slow but continuous

growth. Of course, these increases also attract "investors", who are

keen to buy and resell later, speculators and even scammers, who, by

exploiting the weakness of real enthusiasts and the security lacks of

online sales systems, definitely contribute to the fact that the match

between supply and demand can only be found higher and higher on

the price scale.

Fortunately, some niches of real enthusiasts do resist. They are

populated by those who care that their hobby does not die under the

blows of blind market trends and still practice the direct exchange of

hardware, without involving payments in money. Fortunately, most of

the software emulators for our beloved systems are available for free or

even open-source. Fortunately, new hardware products (mostly FPGA-

based) that are inspired by or reproduce old machines come to market

at quite affordable prices while offering an experience not unlike that of

the original systems. Otherwise, despite the increasing number of

people (re)approaching the world of 8- and 16-bit systems, home and

micro computers or video game consoles, this passion of ours made of

collecting, using, putting our hands back on the original hardware to

save it from oblivion, would remain the prerogative of a few "well-off"

people and in time would disappear completely.

Because it is the energy of passion we all share that keeps

retrocomputing alive, not money.

David La Monaca

(*) USD 595, LIT 973,500, DM 1495, GBP 325: equivalent to about USD 1,576 in

2019 - source Wikipedia

SUMMARY

◊ Interview with Giuseppe Ettore
Pintus

◊ How to unprotect GW-BASIC
programs

◊ RetroMath: how to transform an image

◊ FORTH: the secret weapon!

◊ Minigrafik: a graphical extension for
the Vic-20 BASIC

◊ Alien Attack! - a new game in
Locomotive Basic

◊ Introduction to ARexx – part 2

◊ Cross-programming in C on the
Olivetti M20

◊ Japan 13th episode: Nintendo G&W,
a challenge to immortality

◊ The LM80C Color Computer - part 2

◊ Ruff 'n' Tumble (Amiga/CD32)

◊ Golden Axe Warrior (Sega Master
System)

◊ Alien Breed (Amiga)

◊ Frantic Freddie (Commodore 64)

◊ Punchy (Commodore 16/64)

◊ Tiny Bobble (Amiga)

◊ Black Torne (SNES)

◊ Sturmwind (Dreamcast)

◊ Sensible World of Soccer 2020 (PC/
Amiga)

 Page 3

 Page 6

 Page 9

 Page 15

 Page 18

 Page 22

 Page 28

 Page 32

 Page 38

 Page 48

 Page 51

 Page 53

 Page 55

 Page 57

 Page 58

 Page 59

 Page 61

 Page 62

 Page 64

People involved in preparing this issue
of RetroMagazine World (in no particular order):

• Alberto Apostolo

• Giuseppe Fedele

• Michel Jean

• David La Monaca

• Gianluca Girelli

• Davide Bucci

• Giorgio Balestrieri

• Michele Ugolini

• Carlo N. Del Mar
Pirazzini

• Federico Gori

• Marco Pistorio

• Querino Ialongo

• Daniele Brahimi

• Leonardo Miliani

• Flavio Soldani

• Francesco Fiorentini

• Graphic support
Irene G. Valeri

• Cover
Flavio Soldani

• Proof-reading
Francesco Fiorentini,
David La Monaca, Robin
Jubber, Giorgio
Balestrieri, Alberto
Apostolo, Gianluca
Girelli, Michele Ugolini

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 3 of 65

RETROINTERVIEW

For a few weeks now, MSX users have been able to get

their hands on a new game, which has struck everyone

for its extremely fluid scrolling and difficulty. We are of

course talking about Freedom Fighter - Rise of the humans!,

created by the talented Giuseppe Ettore Pintus.

The game, which participates at the 2020 edition of the

MSXDev, has all the cards to be one of the absolute

protagonists of this competition. Its programmer is easily

met in many Italian FB retro-groups and we at RMW could

not miss the opportunity to ask him a few questions. A

nice interview came out, full of interesting ideas and to

be read in one breath!

Hello Giuseppe and thank you for accepting our invitation

for this interview in the pages of Retro Magazine World.

Before we start talking about your game 'Freedom Fighter

- Rise of the humans', let's start with a few ritual questions

to get to know the man before the programmer.

Do you want to tell us something about yourself? Who
is Giuseppe Ettore Pintus and what does he do in his life?

Hello everyone and thank you for the invitation. Giuseppe

in life is first and foremost a husband: if you have Freedom

Fighter in your hands you owe it to the patience of my

wife, who supported (or endured?) my passion and my

project. I am an electrician by profession (a bit reductive

as a description, because I do not only deal with electrical

systems, but more or less makes the idea).

The game you created is for the MSX standard, a computer
that in Italy did not have the success of the Commodore
64 and Spectrum. Why did you approach this machine?

The MSX was the computer with which I grew up, unique

among many Conmmodore 64 friends and some owners

of Amstrad CPC (at the time the one distributed by

Schneider together with a computer courses was popular

on our side). I had a few "tape exchanges” with classmates

of friends but then I met only a couple of msxists in person.

In case the MSX wasn't your first computer, what was
it and what do you remember?

The first computer to enter my house was a Commodore

Vic20. I still own and love the original of my childhood!

The passion for programming was born with him. It came

home on my 10th birthday. It arrived “naked and raw.”

No games, no tape. So every day I used to type one (but

sometimes all) of the three listings at the bottom of the

manual (they were three basic games of Duane Later).

How many syntax errors in that period! Then at dinner

time I turned off the Vic, and since I couldn't record, I

knew I'd have to do it all over again the next day!

How did you get to know the world of programming?
Are you a self-taught person, like many of us in the 80s/
90s, or have you taken any special training courses?

Absolutely self-taught. Like I said, it all started with Vic20.

By typing, reading and re-reading the manual (and all

the examples contained) codicng became familiar. Then

over time we bought the datassette and the first magazines.

I used to copy and study lists. When I put the Vic-20 aside

to replace it with the MSX, I had three/four BASIC games

in place that I designed and programmed from scratch:

a Breakout clone, a ten-line-like racing game, a PacLand

platform (with single screen scrolling) and a racing game

similar to the GiG Game & Watch. I continued with THE

MSX BASIC (and bought the assembly book that I never

Interview with Giuseppe Ettore Pintus
Author of Freedom Fighter - Rise Of The Humans!

by Francesco Fiorentini

Figure 1 - Giuseppe Ettore Pintus working at his game

Page 4 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

RETROINTERVIEW

used in the past because I couldn't find an assembler

program anywhere!) and then moved on to Amiga. I did

a lot of things in Amos, including a complete RPG engine

similar to Eye of the Beholder (but more fluid than the

Amiga version, more similar to Black Crypt to be clear)

What is your favorite programming language back and
for what reason?

At the moment the Z80 assembly, I have programmed

my first official and international game!

What other computers do you like to program besides MSX?

All the ones I mentioned earlier (I got caught in the heat).

How do you approach retro-computing? Do you own
many retro machines or prefer emulators and/or FPGAs?

At the moment I own a VCS2600 Jr (loose and under

repair), a Boxed Vic20 Commodore, 3 MSX VG8020 (one

of them under repair, the first one I had) a Amiga 500+

(mine, also under repair due to Varta curse...) and recently

I bought a MSX2 VG8235 (the dream I had before the

Amiga). I use emulators for convenience, especially to

test the software quickly...

Let's talk a little bit about 'Freedom Fighter - Rise of the
humans', a vertical scrolling shoot'em up, why did you
choose this format for your game?

Eh! Actually, I just wanted to program a smooth vertical

scroll to show that the MSX can do it (and that I can do

it). But once the almost final version of the scrolling routine

was ready, after presenting it on the MSX Resource Center

forum, I was pushed by the other coders to move forward.

I didn't even know which way to start and which cross

assembler to use: I started using an assembler written

in basic on emulated MSX, which they provided in the first

cassette of the magazine C16/MSX in newsstand...

What games inspired you to create Freedom Fighter?

Definitely the first one I can think of is Zanac from Compile.

A milestone in MSX shooting 'em up. In fact, many users

during the development compared the two games. I paid

tribute to Zanac in the first level music (derived from the

original one) and in one of the three secrets of the game.

Unlocking the second secret, in fact, you can change your

spaceship with one of the most famous shooting 'em up

for MSX: Zanac, Twinbee, Star Soldier, Star Force and Hype.

What difficulties did you encounter while writing the code?

Debugging an assembly project on your own, especially

if it's your first project, you've learned all the way down

the road and started directly with an ambitious megarom

project (1 Megabit, i.e. 128KB of cartridge game) is not

a piece of cake. For the rest, when I had some doubts I

had an entire community of coders to ask for advice!

I have not a deep knowledge of MSX
programming, but I often read about
scrolling problems on this machine.
By contrary your game is very fluid,
how did you achieve this result?

It's not that the MSX has scrolling

problems... It doesn't have scrolling

at all! It is a feature that its video chip

(meaning the same as the TI99/4A

and Colecovision) does not have. So

everything that flows is purely a

software-based trick. You need to

know well the hardware you're dealing

Figure 2 - Freedom Fighter's intro screen

Figure 3 - Freedom Fighter's developing environment

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 5 of 65

RETROINTERVIEW

with.

If you could go back and approach work with hindsight,
what would you do differently?

I don't know if I'd change anything. I had a great time

making it happen. Perhaps I would directly avoid accepting

the help offered by doubtful people (who in fact were

excluded from the project) and perhaps I would have

looked for some MSX artists in the community above

(although I seem to have managed discreetly with all that

graphics and code!). What I'm sure I'd do again is work

with Phaze101 on the audio part. It was a fantastic

experience, I think it came very close to what it had to

be like working in a software house in the 80s (...or at

least as I imagined it).

I noticed that you listen carefully to the feedbacks you
receive from players and that you have posted several
updates to your game. Some of these were aimed at
lowering Freedom Fighter's initial difficulty. Did you
deliberately create a game that was difficult to be
completed to pay homage to the format of the 80s games?

Yeah, I initially thought, "Hey! 8-bit games in the '80s

were frighteningly difficult! I need to recreate that feeling.

Besides, it's only five levels. If I make it too easy, it'll be

over in no time. Besides, I played and finished the first

level quietly without losing a life. But then I read THAT

EVERYONE really found it too difficult, so I listened to the

players' voice and started smoothing here and there...

We have arrived at the funny moment of the interview:
"Ask yourself a question and give yourself an answer".

“Who made me do it? ” can that be okay as a question?

The answer is for everyone: boys (grown up, in fact, since

you are lovers of retrocomputing), passions must be

followed. Took me two years to develop the game. But it

was my first game. The assembly was an unknown territory

to me but I really wanted to do it. Do it, too! If you want

to program and you don't know how to do it, you simply

have to start. You can also receive satisfaction from the

very slow BASIC. You learn to think as a programmer, to

solve problems, to exploit hardware. With the current

“widespread knowledge” between coders to ask and

books of the past to download in pdf, manuals and

everything that once was not there, you can really do it.

Do it! Do it!

You can also join our Facebook group, Retro Programmers

Inside, here:

https://www.facebook.com/groups/

RetroProgrammersInside

Before I leave you, I'd like to thank you again for your
time and especially for releasing your freeware game
to the community.

Good luck with your participation in MSXDev 2020!

Thank you and long live the MSX!

Figure 4 - first level of Freedom Fighter

Figure 5 - An MSX Assembly book

Page 6 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

SOFTWARE

Reading Giuseppe Fedele's brilliant article on

Cryptography (RMW #23-IT, RMW #01-EN), I

remembered when (in 1998) I was commissioned to

carry out the porting of some old programs on behalf

of a company that produced textile machines in

Pordenone (Italy).

The programs had been written to GW-BASIC by an

employee of that company, but the paper lists had

been lost and saving with the P protection option

made the source files unreadable.

At the time, I had not been able to find documentation

on how to carry out the unprotection (having been

authorized by the owners of the software, I operated

in an absolutely legal way). I could only dump the

source files with the good old PCTOOLS.EXE on my

386 to try to figure out what the encoding was.

A brute-force solution
Imitating the legendary British cryptographers of

Bletchley Park, I had to try to exploit a weakness of

many encodings and observe the behaviour when

dealing with a very long string formed by the same

character.

As a first test case, I tried to securely save a simple

program (List 1) and display it with a Hex Editor (in

this article I used the free HxD program).

Figure 1 shows that the character "A" is coded

differently depending on the position in the row. At the

same time it is noticeable that after 143 bytes the

encoding is repeated (a real stroke of luck!).

Repeating the same exercise for each character you

can obtain a decoding matrix 256 x 143 (in Figure 2

you can see only a small part). Since there are much

simpler and more elegant methods, I will spare you

the publication of the programmes written at the time

How to unprotect GW-BASIC programs

by Alberto Apostolo

Listing 1

Figure 2

1 REM AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA

Figure 1

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 7 of 65

SOFTWARE

in COBOL that allowed me to arrive at the result.

Solution with a thrust of foil
By searching the Internet nowadays, you can find web

pages on any topic. So I was able to experiment with a

simple trick to unprotect a program by "tricking" the

GW-BASIC interpreter.

First you need to create a dummy program in GW-

BASIC consisting of only two bytes: 0FFh and 1Ah. In

my case I used the Hex Editor HxD (Figure 3).

Then from the interpreter it is necessary to perform

the sequence of operations (Figure 4):

1) load the protected program,

2) load the dummy program,

3) save the program (which will now be unprotected).

The deception occurs because the first byte of a saved

program is 0FFh if the program is unprotected (with

the keywords "tokenized"), 0FEh if it is encoded. The

dummy program only overwrites the first byte and

GWBASIC will diligently decode the subsequent

instructions in memory.

This simple trick has the disadvantage that can be

applied on one program at a time, activating the GW-

BASIC interpreter.

The mystery revealed
While searching for sources to write this article, I

found an interesting post written by Christophe

Lenclud [Len18] showing the decryption system used

by GW-BASIC.

The XOR between each byte of the program and two

keys embedded in GWBASIC.EXE file applies. The keys

are 13 bytes long and 11 bytes long respectively, so

encryption is repeated every 13 x 11 = 143 bytes (List

2).

In [Len18] there is a (incomplete) list of the versions

on which this system is applied that is based on the

search of the keys within the executable file of the

various BASIC interpreters:

1) BASICA.EXE (size 54272 bytes, 13 May 1983

12:00:00, MD5 =

28E22CAA7EC534A78D37AA3314690758) from "The

COMPAQ Personal Computer DOS, Version 1.11" Rev

E.

2) GWBASIC.EXE (size 59728 bytes, 05 June 1984

01:25:00, MD5 =

2FB3EB25944C27267626836435DE7369) "BASIC

Figure 3

Figure 4

; Input: DS:SI > Data to be deciphered.
; DS:DX > After end of data.
Decipher_GWBASIC proc near
 mov cx, 0D0Bh
 mov di,si
 mov bh,0
 cld
@@LoopDecipher:
 cmp si,dx
 jz short @@EndOfFile
 ; Decipher one byte...
 mov bl,ch
 lodsb
 sub al,cl
 xor al, [bx + offset Key1 1]
 mov bl,cl
 xor al, [bx + offset Key2 1]
 add al,ch
 stosb
 ; Next byte...
 dec cl
 jnz short @@NotZ1
 mov cl,0Bh
@@NotZ1:
 dec ch
 jnz @@LoopDecipher
 mov ch,0Dh
 jmp @@LoopDecipher
@@EndOfFile:
 ret
Decipher_GWBASIC endp

Key1 db 9Ah, 0F7h, 19h, 83h, 24h, 63h,
43h, 83h, 75h, 0CDh, 8Dh, 84h, 0A9h
Key2 db 7Ch, 88h, 59h, 74h, 0E0h, 97h,
26h, 77h, 0C4h, 1Dh, 1Eh

Listing 2

Page 8 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

SOFTWARE

Interpreter - Version 1.12.03 - Copyright (C) 1984

Corona Data Systems, Inc" from MS-DOS 1.25.

3) Floppy disk images of Compaq MS-DOS 1.10, 1.11,

1.12, 3.00, 3.31.

4) Floppy disk images of MS-DOS 1.25, 2.11, 3.10,

3.30.

Instead, encryption takes place with a similar system

where SUB and ADD registers are inverted [Kit18]:

1) SUB AL, CH

2) XOR AL,Key1(pos. CH)

3) XOR AL,Key2 (pos. CL)

4) ADD AL, CL

Conclusions
Listing 3 contains my GW-BASIC version of the

decryption algorithm (with some adjustments due to

simulation of the AL registry with GW-BASIC).

The unprotected file is still "tokenized" but you can

upload and then save with option A of conversion to

text mode.

Lenclud does not say this, but decryption starts from

the second byte onwards (the first one is reserved for

the encoding flag).

Bibliography
[Bas85] AA.VV. "GW-BASIC User's Manual", 1985.

[Kit18] S.Kitt, "How were Microsoft GW-BASIC “protected” files encoded?",

https://retrocomputing.stackexchange.com/questions/7104/how-were-microsoft-gw-basic-protected-files-encoded

lastly consulted on 23.05.2020.

[Len18] C.Lenclud, "Deciphering GW-BASIC / BASICA protected programs",

https://slions.net/threads/deciphering-gw-basic-basica-protected-programs.50/

lastly consulted on 23.05.2020.

Listing 3

 1000 REM UNPROT2.BAS1010 REM UNPROTECTING GWBASIC PROGRAMS1020 DIM K1(13):DIM K2(11)1030 FOR J=1 TO 13:READ K1(J):NEXT J1040 FOR J=1 TO 11:READ K2(J):NEXT J1050 REM NAME OF PROTECTED PROGRAM1060 OPEN "test1.BAS" FOR INPUT AS #11070 REM NAME OF UNPROTECTED PROGRAM1080 OPEN "test1u.BAS" FOR OUTPUT AS #21090 CH=13:CL=111100 AL=ASC(INPUT$(1,#1)) :REM SKIP FIRST BYTE1110 PRINT #2,USING"!";CHR$(255); :REM WRITE 0FFhex1120 IF EOF(1) THEN 12801130 AL=ASC(INPUT$(1,#1))1140 AL=ALCL :REM SUB AL,CL1150 IF AL < 0 THEN AL=AL+256:REM IT'S BASIC NOT ASSEMBLY1160 U=AL:V=K1(CH):GOSUB 1310:REM XOR AL,K1(CH)1170 AL = X :1180 U=AL:V=K2(CL):GOSUB 1310:REM XOR AL,K2(CL)1190 AL = X :1200 AL = AL + CH :REM ADD AL,CH1210 AL = AL MOD 256 :REM IT'S BASIC NOT ASSEMBLY1220 PRINT #2,USING"!";CHR$(AL);1230 CL=CL11240 IF CL = 0 THEN CL=111250 CH=CH11260 IF CH = 0 THEN CH=131270 GOTO 11201280 CLOSE #11290 CLOSE #21300 END1310 REM X = U XOR V1320 X=01330 FOR J=0 TO 71340 BITU = U MOD 2:BITV = V MOD 21350 X = X + (BITUBITV)*(BITUBITV)*(2^J)1360 U=INT(U/2):V=INT(V/2)1370 NEXT J1380 RETURN1390 DATA 154,247,25,131,36,99,67,131,117,205,141,132,1691400 DATA 124,136,89,116,224,151,38,119,196,29,30

https://slions.net/threads/deciphering-gw-basic-basica-protected-programs.50/
https://retrocomputing.stackexchange.com/questions/7104/how-were-microsoft-gw-basic-protected-files-encoded

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 9 of 65

SOFTWARE

RetroMath: How to transform an image...
by Giuseppe Fedele

Page 10 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

SOFTWARE

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 11 of 65

SOFTWARE

Page 12 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

SOFTWARE

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 13 of 65

SOFTWARE

Page 14 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

SOFTWARE

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 15 of 65

SOFTWARE

In September 1982, the British company Jupiter

Cantab, founded by two members of the Sinclair

Company staff, launched the Jupiter Ace, a direct

competitor to their former company's ZX-81 and

Spectrum.

The Ace has a similar case to the Spectrum, the same

microprocessor, but the small company has a joker

in hand: it is programmable in Forth.

While BASIC is the language used by all the competitors

at this time, the British company was taking the bet

of distributing its machine with the Forth language.

This language at occupies half the memory space

and allows an execution six to ten times faster than

BASIC, making the Jupiter Ace the most efficient

machine in it's price range.

At the time, Forth is not widely used in microcomputing,

but it's not totally unknown.

Already in 1980, Byte magazine devoted an issue

to it. It suggests that the Atari company is developing

a version that will allow them to develop their arcade

games faster : «(…) Atari has developed its own

custom version of the language, called game-FORTH,

that is awaiting its first use to replace machine code

as the language used to create arcade games.

Someday soon, you may play a coin-operated game

without knowing that you are actually running a

FORTH program».

This statement gave birth to the legend, still circulating

today in the Forth community, that Forth would be

Atari's secret weapon. Although, there is no evidence

that major video game production companies made

extensive and secret use of Forth , several software

have taken advantage of the speed of development

that Forth allows.

For example, it is documented that the game Starflight,
published by Electronic Art in 1986, was developed

in Forth: "The team coded the game mostly in Forth

with a few key routines written in x86 assembler.

Forth was chosen since it is easier to use than

assembler and more compact. This was important

because the game had to fit into 128K of RAM ».

But what is Forth? Forth is a language developed in

the sixties by Charles H. Moore. In charge of calculating

satellite trajectories for an observatory, Moore was

looking to develop a toolbox that would allow him

to facilitate his daily work. After several years of

maturation, this toolbox became, in the early seventies,

a powerful, elegant and addictive language.

Forth's strength is that it is only a core that can be

easily modified and improved according to its needs,

similar to Lego blocks building the shape we want.

The best argument in favour of Forth is its use and

I will present some elements of the langage. The

goal is not to provide a programming course, but to

give an overview of the possibilities of the language.

For a more complete initiation, I advise the essential:

Starting Forth by Leo Brodie available for free online .

There are Forth implementations for literally any

platform. Whether it's a Commodore 64, a Atari 800,

FORTH: the secret weapon!
di Michel Jean

Page 16 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

SOFTWARE

a PDP-11 or your Linux 64 bit. Contrary to what many

would like to believe, Forth is a fairly simple language,

but to approach it we have to leave aside many reflexes

that we developed with other languages. Forth is a

compiled and interpreted language. So, a bit like in

BASIC, we can test each function or procedure (a

word in Forth) directly in the interpreter. But that's

where the comparison ends, no GOTO, no line number

in Forth.

Forth is a very different language from Basic, Fortran,

Pascal, C++ or Java. It is closer to Lisp, APL, Prolog

or Smaltalk. Although it looks like a functional language,

we can't define it that way, not everything is function

in Forth. It's a language where programming consists

in building a software tool from "primitives". These

tools are then used to create new ones, and so on

until the application itself. Two other fundamental

characteristics distinguish Forth from traditional

languages. First, the intensive use of the stack, which

avoids creating a multitude of variables and constants.

Second, the fact that it works in Reverse Polish Notation

(RPN).

This notation which makes the notoriety of the HP

calculators of the 70s and 80s. For example, if we

want to add 12 + 5 we will enter to the interpreter :

12 5 + .
12 and 5 are then introduced in the stack, the [+]

being a function (in Forth we would say a Word) which

takes the last two elements of the stack to add them

and returns the result in the stack. The point [.] then

displays the element at the top of the stack.

This may seem complex, but, as HP calculator users

know, it quickly becomes natural and saves the need

for parenthesis and questioning the prioritization of

operations. The expression 2 * (3 + 6) becoming 2 3

6 + * The addition is applied to 3 and 6, 9 is then sent

to the stack, the multiplication is then applied to 2 and 9.

Forth defines a wide variety of special operators to

manipulate the stack data, to reorganize it (ROT,

SWAP), to delete elements (DROP), to generate

elements (DUP, OVER).

For example, the following expression calculates the

square of 10 using the word DUP which duplicates

the value at the top of the stack and sends the result

to the stack:

10 DUP *

We could use this piece of code to create a new

operator called SQUARE. This would be done by telling

the compiler that we want to define a new word using

the colon [:] followed by the name of our word. We

will indicate the end of the compilation with the

semicolon [;] .

Thus we get :

: SQUARE DUP * ;

We then defined a new word that will take the first

element of the stack, duplicate it and multiply it by itself.

So,

4 SQUARE
will send 16 into the stack.

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 17 of 65

SOFTWARE

Why stop here ? From this new word, I can create

another one : CUBE

: CUBE DUP SQUARE * ;
4 CUBE will send 64 into the stack. (Ex.1)

Forthers generally favour short definitions, and a

short definition can be surprisingly effective. Here

Euclid's algorithm for determining the most greatest

common divisor (GCD) fits in a single line. (Ex.2)

: GCD BEGIN 2DUP MOD ROT DROP DUP 0 = UNTIL
DROP . ;

Of course, we could criticize the lack of readability of

this line of code, but nothing prevents us from

documenting our code, which is usually done by

parentheses, mainly by clearly indicating the effect

of the Word on the stack.

In fact, such an obscure line should never be found

in a good Forth code. As an exercise, we leave it to

the reader to analyze this line of code, but you can

see one of the many ways to introduce a conditionnal

loop in Forth with BEGIN and UNTIL.

Data manipulation is not only done by using the stack.

Forth also allows the use of variables and constants,

but here again the language offers a flexibility that

can be found almost exclusively in assembler. Thus,

let's declare a variable (with the word Forth VARIABLE)

VARIABLE myvariable

the word [!] associates a value for this variable.

36 myvariable !

It is important to realize the distinction between the

address of the variable and the content of the address.

If I type the name of my variable in the interpreter,

what will be sent to the stack is the address of the

variable. To get the content of the variable I use @

(called fetch in Forth). Thus [myvariable @ .] gives

the content which is found at the myvariable memory

address, in this example 36.

You probably now have an idea of what we meant

when we were talking about a toolbox. You certainly

also get a glimpse of the continent that Forth

programming opens up for us. Forth never had the

notoriety of C, Pascal or BASIC. The Jupier Ace did

not have the commercial success that these creators

would have hoped for. But many of those who

experimented Forth have developed an addiction for

this langage and the Forth community is still very

much alive.

Forth may not have been Atari's secret weapon, but

it may be yours.

Page 18 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

SOFTWARE

One of the most refined amusements of us geeks and

retro-fans is looking for so-called "hacks" on our old dear

systems. Computer hacks are particular software solutions

or pieces of code that, taking advantage of some hardware

features, can solve a certain problem to speed up or

simplify a process or to implement striking functions and

eye-catching applications, usually something unexpected

for a machine known for its limitations. This is the beauty

of software, the "magic" that sometimes manages to

overcome the inner limits of a hardware architecture.

YouTube and some other sites collecting demos and intros

are full of these hacks. A real-time colour video on the

Atari 800XL? Done.[1] A chess program on ZX81 with

only 1K of RAM? Got it![2] More than 16 colours

simultaneously on a C64 bitmap image? Seen that too!

[3] What about Doom running on an unexpanded Vic-20?

Beautiful![4] And a .MOD track that plays on Impulse

Tracker and runs the Bad Apple animation on the four

tracks? What a fantastic idea![5]

Well, I could go on for a while. The list could be very long

and it could easily be the subject of a next, tasty article

for RMW. Sometimes, in the category of “computer hacks”

end up single pieces of code written in assembly or other

languages (even in BASIC) that solve specific problems

or constitute useful and effective solutions. Creativity in

writing software, if it comes from right and wise hands,

can result in small or big masterpieces. However, only

experts and lovers of the art of coding can really appreciate

and recognize these true strokes of genius, because they

often are the result of a deep knowledge of a computer

hardware, a single processor or an audio / video chip, a

programming language or an entire system.

MINIGRAFIK for the Vic-20
In the category of hacks being at the same time surprising

and effective falls a project by Michael Kircher, a German

engineer, universally recognized as a sort of guru of the

Commodore Vic-20, author/coder of many programs and

games and among the most active users of Denial, the

famous forum all dedicated to this little machine. Michael

is also the author and maintainer of a graphics library

(and its complementary high resolution pixel editor) that

can be easily defined a "top solution" for the little Vic.

Much more than that: Minigrafik (this is the name given

to the library that extends the infamous Commodore

BASIC V2 with some graphic instructions) is a real "software

hack" providing the Vic-20 with primitive graphics and

convenient instructions to fill the 160x192 screen with

many beautiful coloured pixels to draw bitmap images,

graphics and 2D/3D functions, design games backgrounds

and more. A full-screen editor called MiniPaint is the

practical complement to the MiniGrafik library. It allows

you to draw "freehand", select colours and shapes to

create backgrounds and bitmap images to be used in your

games and applications or export them to a reusable

format. MiniPaint itself is actually an application written

partly in BASIC extended with MiniGrafik, which has now

become a standard for creating BASIC or Assembly games

and programs that make use of high or medium resolution

graphics mode.

To extend the BASIC of the Vic-20 with Minigrafik all you

need is 8K of RAM expansion and a floppy disk drive or a

D64 [MG] image. Then you just load the library and run

it. Once launched, the extension will automatically load

into RAM, allocate the graphics memory and return control

to BASIC by changing the opening message and updating

the number of free bytes (a few less, of course). Alternatively

you can use a boot loader, which in sequence loads

Minigrafik, initializes the extension without returning to

the boot screen and then proceeds to load a client program

(application or game) that needs the graphics library.

MiniGrafik: a graphical extension for the Vic-20 BASIC
by David La Monaca

Figure 1. Minigrafik's logo, created with Minigrafik

Figure 2. An 8K RAM expansion is needed to run MG

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 19 of 65

SOFTWARE

Using this method, the Minigrafik implementation becomes

very simple: as long as the D64 disk image contains a

copy of the library and all programs and games making

use of MG can easily be launched after loading the

extension. This modular system is much more comfortable

than the method of embedding the library into every

program. Any extension updates can also be done more

quickly and effortlessly.

The Minigrafik extension consists of a single .PRG file that

can be loaded from disk with a simple command: LOAD

"MINIGRAFIK",8. After the RUN command, the CBM BASIC

start message will appear again. As said, the number of

bytes available for your BASIC programs will be reduced

by the amount allocated for the bitmap screen and the

extension itself, which basically adds 6 new custom

commands and a function to the BASIC interpreter. All

new instructions are preceded by the '@' character and

should only be used in program mode and not as direct

commands from the BASIC prompt. This is because normal

text output can interfere with the high-resolution screen.

Also, when writing code, after a THEN of an IF construct,

you must be careful to always use the colon ':' before a

Minigrafik command, otherwise the program will stop

with an annoying '?SYNTAX ERROR'.

The additional commands
The new commands that MG adds to BASIC are: @ON,

@CLR, @RETURN, @SAVE and @LOAD. The library is

completed by the @() function that returns the status

and color of a single pixel. Let's quickly see its features

and usage:

@ON initializes bitmap mode at 160x192 pixel resolution,

correctly centering the screen for both VIC chips, NTSC

and PAL.

@CLR clears the screen in high resolution. The colour

RAM is initialized to the foreground colour.

@RETURN returns to text mode. If an error occurs while

running a program, this command is automatically executed

before printing the error message on the screen.

@<color>,<x1>,<y1> [TO <x2>,<y2>] - draws a line

with the color indicated by the screen coordinates x1,y1

to the coordinates x2,y2. If the TO part is omitted, a single

pixel at the x1,y1 coordinates is plotted. The values of x1

and x2 range from 0 to 159, while y1 and y2 range from

0 to 191. The screen origin is fixed in the upper left corner.

All arguments can be entered as numbers, variables or

numerical expressions.

In medium resolution (or multi-color mode) the resolution

is halved and therefore for all x even, x and x+1 coordinates

indicate the same pixel. The foreground color (0 to 7) are

set individually for each 8x16 pixel cell. In this graphic

mode two extra colors are available in addition to the

background (G) and foreground (F): the edge color (B)

and the auxiliary color (A). The background color (0 to

15), the border color (0 to 7) and the auxiliary color (0

to 15) apply to the entire screen.

To assign colors on the screen in the two modes, you need

to use some very direct POKE commands:

POKE 36879.16*G+8+B (to set background colour G and

Figure 3. The Vic-20 table of colors (0-15)

Figure 4. An image created with MiniPaint

Figure 5. Another image created with MiniPaint

Page 20 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

SOFTWARE

border colour B)

POKE 36878.16*A (to set auxiliary colour A)

POKE 646.8*M+F (to set foreground colour [F] and enable

[M=1] or disable [M=0] multi-colour mode)

Here is the complete VIC colour list:

0 Black 8 Orange

1 White 9 Light Orange

2 Red 10 Light Red

3 Cyan 11 Light Cyan

4 Purple 12 Light Purple

5 Green 13 Light Green

6 Blue 14 Light Blue

7 Yellow 15 Light Yellow

@SAVE [<filename> [,<device>]] - saves the bitmap

screen to a device (e.g. disk, 8). The file name is optional

when saving to tape. The file is saved with an initial SYS

command that invokes a graphics library display routine.

The routine then waits for a keystroke and finally restarts

the VIC.

@LOAD [<filename> [,<device>]] - loads a bitmap screen

from a device (disk or tape). The command without

arguments loads the first bitmap screen from the tape.

When the loading is finished, the image is automatically

shown on the screen and the running program continues

with the following instruction. There is no waiting for a

button to be pressed.

@(<x>,<y>) - The only function provided returns the color

of the pixel at the coordinates (x,y). The x argument varies

from 0 to 159 while y goes from 0 to 191 and both can be

entered as numbers, variables or numeric expressions.

Depending on the graphic mode in use (M=0 or M=1) the

function returns values from 0 to 3 (0 for background pixel,

1 for foreground pixel, 2 and 3 for an auxiliary colour pixel).

Example listings
We warmly invite you to download and give a try to MiniGrafik

and its many examples which come included in the

distribution diskette. We add here below a couple of

examples that make use of the library. In the first listing

we refer to the articles already appeared on RMW about

2D function plotting, whereas in the second one we present

a complete game, a Snake clone, written by Michael Kircher

himself. Both listings are self-explanatory and quite easy

to understand for those who chew at least some BASIC.

By examining them you will appreciate how the few

commands of MiniGrafik are really well designed and easily

integrate with the rest of the BASIC V2 instructions, thus

providing a concise and effective tool to write programs

that make use of the graphics mode. The results in terms

of speed of tracing straight lines and curves, loading and

saving screens, control and flexibility in handling the bitmap

screen, are perfectly up to expectations. MiniGrafik is now

a de facto standard and a stable reference point for all

programmers of the beloved and unforgettable Vic-20.

Figure 7. Bitmap image created with MiniPaint

-- Listato: mg-2d functions

10 rem vic20 + minigrafik
20 rem 2d functions plot
30 rem *******************
120 sx=160
130 sy=191
140 hy=sy/2
150 printchr$(147)
160 print" 2d functions plot"
170 print
180 print"1.y=x*x*sin(1/x)"
190 print
200 print"2.y=x*sin(1/x)"

Figure 6. A screenshot of Minipaint

Figure 8. A simple clone of Snake

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 21 of 65

SOFTWARE

210 print
220 print"3.y=sqr(x*x+2)"
230 print
240 print"4.y=cos(x*exp(x/5))"
250 print
260 print"5.y=6+2*x*xx*x*x*x"
270 print
280 print"type in the number of"
290 print"the equation";
300 input n
310 ifn=1thendeffna(x)=x*x*sin(1/x)
320 ifn=2thendeffna(x)=x*sin(1/x)
330 ifn=3thendeffna(x)=sqr(x*x+2)
340 ifn=4thendeffna(x)=cos(x*exp(x/5))
350 ifn=5thendeffna(x)=6+2*x*xx*x*x*x
360 print
370 print"values of x range"
380 print
390 print"lowest value";
400 inputa
410 print
420 print"highest value";
430 inputb
440 print
450 ifa>=bthenprint"errortry again"
460 ifa>=bthengoto360
500 rem ***calculating range of y ***
510 print"calculating range of y"
520 c=(ba)/100
530 m=1.0e30
540 forx=atobstepc
550 ifx=0thengoto580
560 y=abs(fna(x))
570 ifm<ythenm=y
580 next x
590 print"ready to plot"
600 fori=1to1000
610 next i
620 printchr$(147)
630 gosub1010:rem prep screen
700 rem *** plotting
710 c=c/10:rem try c/5 or c/20
720 forx=atobstepc
730 ifx=0thengoto790
740 y=fna(x)
750 u=sx*(xa)/(ba)
760 v=hy+hy*y/m
770 ifv<0orv>sythengoto790
780 gosub1110:rem plot u,v
790 next x
800 rem *** ending
810 getg$:rem g$=inkey$
820 ifg$=""thengoto810
830 gosub1210:rem restore screen
840 printchr$(147)
850 print" another go? y or n"
860 getg$
870 ifg$<>"y"andg$<>"n"thengoto860
880 ifg$="y"then goto150
890 end:rem stop
1000 rem *** prepare hiscreen
1010 @on
1020 @clr

1030 :
1040 return
1100 rem *** plot function's dots
1110 @1,u,syv
1180 return
1200 rem *** restore screen
1210 @return:poke198,0
1220 return

-- Listato: mg-snake

1 REM *****
2 REM SNAKE
3 REM *****
10 DIMDX(3),DY(3):DX(0)=2:DY(1)=
3:DX(2)=
2:DY(3)=3:HX=80:HY=97:TX=HX:TY=HY:I=1
11
POKE36878,160:POKE36879,15:POKE646,13:@
ON:@CLR:@1,0,0TO0,191:@1,158,0TO158,191
12 FORY=0TO2:@1,0,YTO158,Y:@1,0,191
YTO158,191Y:NEXT:@2,HX,HY+1TOHX,HY
1:GOSUB23:SC=0
13 GETA$
14 IFA$="X"THENI=0
15 IFA$=";"THENI=1
16 IFA$="Z"THENI=2
17 IFA$="/"THENI=3
18 @1,HX,HY+1:@I,HX,HY:@1,HX,HY
1:HX=HX+DX(I):HY=HY+DY(I)
19 J=@(HX,HY1):@2,HX,HY+1TOHX,HY
1:IFJ=3THENJ=0:GOSUB23:GOTO21
20 K=@(TX,TY):@0,TX,TY+1TOTX,TY
1:TX=TX+DX(K):TY=TY+DY(K)
21 IFJ=0THEN13
22 @RETURN:PRINT"SCORE:"SC:END
23
X=2*INT(RND(1)*80):Y=3*INT(RND(1)*64):I
F@(X,Y)<>0THEN23
24 @3,X,YTOX,Y+2:SC=SC+1:RETURN

References
[1] Real time video on the Atari 8-bit - https://

www.youtube.com/watch?v=PAeYZWz15Ns

[2] ZX-81 1K Chess - https://www.youtube.com/

watch?v=m0VAwqg9N0k

[3] HFLI picture on a C64 - https://

www.youtube.com/watch?v=SgM6KVdae3Y

[4] Doom running on Vic-20 - https://github.com/

Kweepa/vicdoom

[5] Bad Tracker - https://www.youtube.com/watch?

v=SDvk3aL78fI

[MG] MiniGrafik Batch Suite - http://

sleepingelephant.com/ipw-web/bulletin/bb/

viewtopic.php?t=5179

MiniGrafik download - https://dateipfa.de/.Public/

denial/minigrafik/minigrafik.zip

MiniPaint - http://sleepingelephant.com/ipw-web/

bulletin/bb/viewtopic.php?t=5627

MiniPaint manual - https://dateipfa.de/.Public/

denial/minigrafik/manual.zip

Page 22 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

SOFTWARE

At the beginning of August, on the Retroprogramming
group Italy - RP Italia, a challenge was called inviting

attendees to reproduce a clone of the game Air Attack.

The challenge proposed by the group, with the aim of

bringing more and more people closer to retro-programming,

was as follows:

A) The challenge is to play one or more clones of the
game "Air Attack", using the following languages: Basic,
or C, or ASM or even a combination of the above, such
as Basic+ASM or C+ASM.
B) Such games may be programmed for any 8/16-bit
computer (including 8088/8086 platforms).
C) Your work must in any case respect the following
categories:
1) Category "Full BASIC"
2) Category "Full C"
3) "Full ASM" category
4) Category "Mixed C" (C + ASM)
5) Category "Mixed BASIC" (Basic + ASM)

Initially the deadline for the delivery of the work had been

set for the end of August and, overwhelmed by work and

family commitments, I had initially exceeded it.

Towards the end of August, however, I notice that the

deadline was postponed to September 24 and, driven by

curiosity, I decide to write two lines to animate an airplane...

Obviously my poor propensity for graphics is not at all

helpful in drawing an airplane, so I decide to focus on

something more linear. Idea! I can replace the airplane

with an alien spaceship; much easier to make.

However, the problem remains that in order to make a

ship that is minimally credible, a single character is not

enough, it takes at least two.

Armed with all my artistic flair, I create the two works as

you can see above.

Seeing them individually, magnified in the 8x8 editor, does

not make a nice impression, but once they are side by

side I have to admit that the effect is credible enough.

I had my spaceship.

Now all that remained was to animate it and see if the

Locomotive Basic can handle the movement of two

characters side by side quickly enough... (spoiler: it

definitely can!).

Fortunately, the animation of the protagonist of the Air

Attack game is quite simple. It is a matter of moving the

object horizontally, in only one direction and, once you

reach the extreme limit of the screen, starting from the

opposite end only a little lower.

You can just draw the two characters side by side and

move them one at a time (to the right or left), taking care

to clear the first box opposite the direction of travel (easier

to do than to say...).

Repeating this process for the entire length of the screen

will have the effect of a unique object moving from one

side of the video to the other.

I strongly suggest to those who have never tried to create

a game, to try to animate an object on the screen to

understand how simple this technique is. Once you've

Alien Attack!
a new Locomotive Basic game
by Francesco Fiorentini

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 23 of 65

SOFTWARE

done this experiment, you'll want to add a few more

objects and in no time you'll have accomplished something

that looks like a game. Try to believe!

Well, now that I've animated the main character, using

the same principle, but vertically, I can animate the bomb.

By the way, the animation of the bomb naturally leads to

the destruction of the buildings, since the design of the

bomb will overwrite ecah floor of the building any time it

passes over. Easier than that!

The background drawing is probably the thing that took

the most of my time. I wanted to achieve something that

was random, but at the same time with a certain logic.

Initially I tried to limit the number of buildings and their

height by drawing them randomly along the entire length

of the screen... The effect was horrible!

More than a city, they looked like a series of random stairs,

without any logic.

I need a better idea... Think Francesco, think!

Idea! What if I draw the buildings starting from the center

and expanding to the right and left as I add one?

I can always limit their number and height and increase

these variables as you continue in the game, but at least

the visual impact should be better.

I tried and... EUREKA! I found my background drawing

routine.

The effect is not that bad, especially considering that

everything is generated randomly and dynamically.

Also take in mind that the floors of the buildings and their

tops are also randomly generated by choosing from a

group of 6 and 4 different tiles respectively and you can

understand how it is actually difficult to play a game that

is the same as a previous one.

I have achieved my goal, I have created a random

background that, however, has a semblance of credibility

resembling a city.

What remained to be done? Oh, yes! The collision control

of the spacecraft with the buildings and the passage to

the next level once all the buildings have been destroyed.

Well, you won't believe it, but out of the two, the second

one was the most complex challenge.

Collision control in Locomotive Basic is pretty trivial. This

language is provided with the COPYCHR$() function which

copies the character of the current position into a variable.

It is therefore intuitive how it is enough to position yourself

with A LOCATE in the position that our spaceship will

assume and read its contents. If the character contained

is a plan of the skyscraper or its summit, it means that

the spaceship collided with a palace!

As for intercepting the destruction of all the buildings

and the consequent passage to the next level, I used a

trick. I could have memorized the location of each building

in an array and cleaned the location whenever the bomb

was on its vertical, but then I would have to scroll through

the array to see if all the buildings had been destroyed...

I then chose to create a text string containing 40 times

the character 0. Every time I draw a building I put a 1 in

the corresponding position, while setting the value back

to 0 in the position where the bomb is dropped. Every

time the spaceship has reached the end of the screen I

check the string variable and if it is formed by 40 times

0, it means that the level is cleaned and I can move on

to the next one.

Now the frame of the game is practically complete and I

can start working on its enrichment.

I drawn an image as an introduction, but I soon noticed

that it lacks of grit. My game will be called Alien Attack!

Page 24 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

SOFTWARE

10 REM **********************************
11 REM AlienAttack! by Francesco Fiorentini
12 REM SETTEMBRE 2020
13 REM **********************************
17 HISCORE=5000
18 GOSUB 10000: REM INTRO
19 GOSUB 9020: REM LETTERS AND NUMBERS REDEFINITION
20 CLS
29 REM GAME CHARS REDEFINITION
30 GOSUB 6000
39 REM NP=NUMBER OF BUILDINGS TH=TOP HIGH
40 NP=6:TH=6:LV=1:LF=3:PT=0:EXTRA=15000
69 REM BACKGROUND (THE CITY)
70 GOSUB 7000
99 REM INITIAL PARAMETERS SETTING
100 BF=0:I=0
998 REM ALIEN MOVEMENT
999 REM R=ROW
1000 FOR R = 1 TO 23
1100 FOR I = 1 TO 42
1110 LOCATE I,R:CK$=COPYCHR$(#0):CKV=ASC(CK$)
1120 REM CHECK COLLISION
1130 REM VOLD CHECK IF CK$=PT$ OR CK$=PF$ THEN GOTO 3000
1140 IF CKV<>32 AND CKV<>254 AND CKV<>255 THEN GOTO 3000
1200 PRINT AF$
1220 IF I>1 THEN LOCATE I1,R: PRINT AB$
1230 IF I>2 THEN LOCATE I2,R: PRINT " "
1239 REM BOMB CHECK
1240 GOSUB 5000

and the mission of the aliens is to invade Earth... So I

need something stronger. The current image, which sees

an alien face to face with a human being, is exactly what

I was looking for.

In the last issue I described how to import images into

Amstrad and how to show them with Basic. I used that

same technique to display the introductory screen and

the Game Over image.

Every game must entice the player by rewarding him with

a score and with the possibility to improve always a lttle

bit by challenging himself.

Then I decided to add points:

- each passage of the ship without collisions is rewarded

with 50 points

- completing the level rewards with 500 points, plus 100

points for each remaining row separating from the ground

and an high score!

To make it even more interesting, and give the player the

chance to always improve, an extra life can be won on

every 15000 points (each multiples of 15000).

The gaming technique is obvious, but I can suggest

targeting the tallest buildings at the first place and moving

on to the lower ones later...

Ah, I forgot to mention that I used again the Future Set

font I described in number 3.

Now I can say the game is complete!

The code, sufficiently commented, can be found here

below, while the virtual image of the floppy disk (with the

images) to be uploaded on your favorite Amstrad CPC

emulator (I use WinAPE), can be downloaded from:

http://www.retromagazine.net/download/AlienAttack.zip

Give it a try and let me know what you think.

Have fun!!!

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 25 of 65

SOFTWARE

1280 NEXT I
1290 PT=PT+50: IF PT>=EXTRA THEN GOTO 1291 ELSE GOTO 1298
1291 EXTRA=EXTRA+15000:LF=LF+1
1292 PEN 2:LOCATE 1,24: PRINT"LEVEL:"; LV ;" LIVES:"; LF ; " POINTS:"; PT:PEN 1
1293 GOTO 1299
1298 LOCATE 30,24:PEN 2: PRINT PT: PEN 1
1299 IF SF$="00" THEN PT=PT+(23R)*100:GOTO 1310
1300 NEXT R
1301 REM LEVEL COMPLETED!!! MOVE TO NEXT ONE
1310 GOSUB 6500
1320 GOTO 70
3000 REM CRASH
3005 CRA$="***":PCRA$=" ":X=I2:IF X<=0 THEN X=1:CRA$="**":PCRA$=" "
3010 LOCATE X,R: PRINT CRA$
3020 LF=LF1
3030 IF LF=0 THEN GOTO 3500
3040 FOR T=1 TO 1000: NEXT T
3050 LOCATE X,R: PRINT PCRA$
3060 PEN 2:LOCATE 1,24: PRINT"LEVEL:"; LV ;" LIVES:"; LF ; " POINTS:"; PT
3061 PEN 1: LOCATE 10,25:PRINT " HISCORE:"; HISCORE; ""
3070 GOTO 99
3499 REM GAME OVER
3500 MODE 1
3501 LOAD "GOVER.SCR",&C000
3510 LOCATE 11,6: PRINT" GAME OVER "
3511 LOCATE 15,8: PRINT"SCORE: "; PT
3525 FOR T=1 TO 1000: NEXT T
3530 LOCATE 11,10: PRINT" PLAY AGAIN? Y/N ": PEN 1
3531 IF PT>HISCORE THEN HISCORE=PT
3550 RE$ = INKEY$
3560 IF RE$="Y" OR RE$="y" THEN GOTO 20
3570 IF RE$="N" OR RE$="n" THEN GOTO 4999
3580 GOTO 3550
4998 REM END OF THE GAME
4999 END
5000 REM BOMB MANAGEMENT BR=BOMBROW BL=BOMBLINE BF=BOMBFLAG(0/1=N/Y)
5010 IF INKEY(47)=0 AND BF=0 THEN GOTO 5020 ELSE GOTO 5025
5019 REM NUOVA BOMBA
5020 BR = R+1: BL=I: BF=1: GOTO 5190
5024 REM CHECK IF A BOMB ALREADY EXISTS
5025 IF BF=0 GOTO 5200 ELSE BR = BR+1
5030 IF BR = 24 THEN BR=0: BF=0: LOCATE BL,23: PRINT " ": MID$(SF$,BL,1)="0": GOTO 5200
5040 LOCATE BL,BR1: PRINT " "
5190 LOCATE BL,BR: PRINT BO$
5200 RETURN
6000 REM ALIEN CHAR(254 e 255)
6010 SYMBOL 254, 3, 7, 31, 57, 183, 255, 34, 85
6020 REM ALIEN CHAR(255)
6030 SYMBOL 255,192, 224, 248, 156, 237, 255, 68, 170
6040 REM DRAW THE BOMB CHAR(253)
6050 SYMBOL 253,0, 36, 24, 60, 60, 60, 60, 24
6060 REM BUILDING FLOORS CHAR (230,231,232,233,234,235)
6061 SYMBOL 230,255, 219, 255, 219, 255, 219, 255, 219
6062 SYMBOL 231,255, 251, 255, 223, 251, 255, 223, 255
6063 SYMBOL 232,255, 219, 255, 223, 255, 223, 255, 255
6064 SYMBOL 233,255, 255, 219, 255, 219, 255, 255, 255
6065 SYMBOL 234,255, 189, 255, 247, 255, 251, 191, 255
6066 SYMBOL 235,255, 223, 255, 247, 255, 255, 223, 255
6080 REM BUILDING TOP1 CHAR (240)
6081 SYMBOL 240, 0, 0, 0, 0, 24, 60, 90, 189
6082 REM BUILDING TOP2 CHAR (241)
6083 SYMBOL 241, 129, 129, 129, 129, 195, 231, 255, 255
6084 REM BUILDING TOP3 (242)
6085 SYMBOL 242, 24, 126, 126, 24, 24, 60, 126, 255
6086 REM BUILDING TOP4 (243)
6087 SYMBOL 243, 24, 24, 24, 24, 24, 60, 126, 255
6189 REM AF$=ALIENFRONT AB$=ALIENBACK BO$=BOMB PF$=PALACEFLOOR PT$=PALACETOP
6190 AF$=CHR$(255):AB$=CHR$(254):BO$=CHR$(253):PF$=CHR$(230)
6200 RETURN
6499 REM DINAMIC LEVEL MANAGEMENT

Page 26 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

SOFTWARE

6500 NP=NP+1:LV=LV+1:PT=PT+500:TH=TH+1
6501 IF PT>=EXTRA THEN EXTRA=EXTRA+15000:LF=LF+1
6504 IF TH>14 THEN TH=15:IF NP>19 THEN NP=19
6505 PEN 2:LOCATE 11,4: PRINT""
6510 LOCATE 11,5: PRINT" GO TO LEVEL";LV;""
6520 LOCATE 11,6: PRINT""
6525 FOR T=1 TO 1000: NEXT T
6530 LOCATE 11,7: PRINT" R U READY? Y/N "
6540 LOCATE 11,8: PRINT"":PEN 1
6550 RE$ = INKEY$
6560 IF RE$="Y" OR RE$="y" THEN GOTO 6570
6565 GOTO 6550
6570 REM FOR T=4 TO 8
6580 REM LOCATE 11,T: PRINT" "
6590 REM NEXT T
6591 CLS
6600 RETURN
7000 REM DRAW THE CITY
7001 REM NP=NUMBER OF BUILDINGS P=PEN'S COLOUR
7002 SF$="00"
7008 PEN 2:LOCATE 1,24: PRINT"LEVEL:"; LV ;" LIVES:"; LF ; " POINTS:"; PT
7009 PEN 1: LOCATE 10,25:PRINT " HISCORE:"; HISCORE; ""
7010 X=20(NP/2): PEN 2
7020 FOR N=1 TO NP
7021 REM LOCATE 2,2: PRINT X
7022 REM RANDOM TOP OF THE BUILDING X=INT(RND(1)*(highlow))+low
7025 A=INT((RND(1)*4)+1)
7026 PT$=CHR$(239 + A)
7030 HI=INT(RND(1)*(TH2))+2
7031 OLDX=X
7041 MID$(SF$,X,1)="1"
7042 X=OLDX
7050 FOR I=HI1 TO 0 STEP 1
7051 REM DRAW THE BUILDING FLOOR RANDOMLY X=INT(RND(1)*(highlow))+low
7052 A=INT((RND(1)*6)+1)
7053 PF$=CHR$(229 + A)
7063 rem P=INT((RND(1)*3)+1):PEN P
7065 IF I=HI1 THEN GOTO 7066 ELSE GOTO 7070
7066 LOCATE X,23I
7067 IF COPYCHR$(#0)<>PF$ THEN PRINT PT$: GOTO 7090
7070 LOCATE X,23I: PRINT PF$
7090 NEXT I
7091 X=X+1
7100 NEXT N
7105 REM PEN 2: LOCATE 1,24: PRINT"LEVEL:"; LV ;" LIVES:"; LF ; " POINTS:"; PT: PEN 1
7110 PEN 1
7300 RETURN
9010 REM **
9011 REM * Future Set on Amstrad CPC
9012 REM * original code by Pete White
9013 REM * Popular Computing Weekly 713 August 1983
9014 REM *
9015 REM * Typed and corrected by
9016 REM * Francesco Fiorentini on June 2020
9017 REM * RetroMagazine World July 2020
9018 REM **
9020 SYMBOL AFTER 32
9030 REM Upper case chars
9040 SYMBOL 65,126,66,66,126,98,98,98,0
9050 SYMBOL 66,126,66,66,126,98,98,126,0
9060 SYMBOL 67,126,64,64,96,96,96,126,0
9070 SYMBOL 68,254,66,66,98,98,98,254,0
9080 SYMBOL 69,126,64,64, 120,96,96,126,0
9090 SYMBOL 70,126,64,64,120,96,96,96,0
9100 SYMBOL 71,126,64,64,102,98,98,126,0
9110 SYMBOL 72,66,66,66,126,98,98,98,0
9120 SYMBOL 73,60,16,16,24,24,24,60,0
9130 SYMBOL 74,126,8,8,24,24,24,120,0
9140 SYMBOL 75,68,68,68, 120,100,100,100,0
9150 SYMBOL 76,64,64,64,96,96,96, 126,0
9160 SYMBOL 77,126,74,74,98,98,98,98,0
9170 SYMBOL 78,98,82,74,102,98,98,98,0
9180 SYMBOL 79,126,66,66,98,98,98,126,0

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 27 of 65

SOFTWARE

9190 SYMBOL 80,126,66,66,126,96,96,96,0
9200 SYMBOL 81,126,66,66,98,98,106,126,4
9210 SYMBOL 82,126,66,66,126,106,100,98,0
9220 SYMBOL 83,126,64,64,126,6,6,126,0
9230 SYMBOL 84,126,16,16,24,24,24,24,0
9240 SYMBOL 85,66,66,66,98,98,98,126,0
9250 SYMBOL 86,66,66,66,66,66,36,24,0
9260 SYMBOL 87,66,66,66,98,106,106,126,0
9270 SYMBOL 88,102,102,36,24,36,102,102,0
9280 SYMBOL 89,66,66,126,16,24,24,24,0
9290 SYMBOL 90,126,4,8,16,32,64,126,0
9295 REM Lower case chars
9300 SYMBOL 97,0,0,126,6,126,70,126,0
9310 SYMBOL 98,96,96,96,126,98,98,126,0
9320 SYMBOL 99,0,0,126,96,96,96,126,0
9330 SYMBOL 100,6,6,6,126,70,70,126,0
9340 SYMBOL 101,0,0,126,98,126,96,126,0
9350 SYMBOL 102,60,48,48,120,48,48,48,0
9360 SYMBOL 103,0,0,126,70,70,126,6,126
9370 SYMBOL 104,96,96,96,126,98,98,98,0
9380 SYMBOL 105,24,0,24,24,24,24,24,0
9390 SYMBOL 106,6,0,6,6,6,6,6,126
9400 SYMBOL 107,96,96,102,108,120,108, 102,0
9410 SYMBOL 108,24,24,24,24,24,24,24,0
9420 SYMBOL 109,0,0,126,90,90,66,66,0
9430 SYMBOL 110,0,0,108,114,98,98,98,0
9440 SYMBOL 111,0,0,126,102,102,102,126,0
9450 SYMBOL 112,0,0,126,98,98,126,96,96
9460 SYMBOL 113,8,0,126,70,70,126,6,6
9470 SYMBOL 114,0,0,108,114,96,96,96,0
9480 SYMBOL 115,0,0,126,96,126,6,126,0
9490 SYMBOL 116,24,62,24,24,24,24,30,0
9500 SYMBOL 117,0,0,102,102,102,102,126,0
9510 SYMBOL 118,0,0,102,102,102,60,24,0
9520 SYMBOL 119,0,0,66,66,90,90,126,0
9530 SYMBOL 120,0,0,198,104,16,104,198,0
9540 SYMBOL 121,0,0,102,102,102,126,6,126
9550 SYMBOL 122,0,0,126,12,24,48,126,0
9555 REM Numbers
9560 SYMBOL 48,126,102,110,118,102,102,126,0
9570 SYMBOL 49,24,56,24,24,24,24,126,0
9580 SYMBOL 50,126,2,2,126,96,96,126,0
9590 SYMBOL 51,126,2,2,30,6,6,126,0
9600 SYMBOL 52,96,96,96,96,104,126,8,8
9610 SYMBOL 53,126,64,126,6,6,6,126,0
9620 SYMBOL 54,126,64,64,126,98,98,126,0
9630 SYMBOL 55,126,2,4,62,16,32,64,0
9640 SYMBOL 56,126,66,66,126,66,66,126,0
9650 SYMBOL 57,126,66,66,126,6,6,6,0
9680 SYMBOL 95,0,255,0,0,0,0,0,0
9690 RETURN
10000 REM INTRO
10005 MODE 1
10010 LOAD "ALIEN2.SCR",&C000
10015 PEN 2
10020 FOR I=1 TO 1000:NEXT I
10030 LOCATE 15,22:PRINT"ALIEN ATTACK!"
10040 LOCATE 8,24:PRINT "2020 Francesco Fiorentini"
10045 PEN 1
10050 FOR I=1 TO 3000:NEXT I:CLS
10060 LOCATE 5, 5: PRINT "Our planet is dying."
10061 LOCATE 5, 6: PRINT "Our species is in danger."
10062 LOCATE 5, 7: PRINT "Our future is in danger."
10063 LOCATE 5, 8: PRINT "Our only purpose is survival."
10064 LOCATE 5, 9: PRINT "Whatever the cost..."
10065 LOCATE 5, 11: PRINT "We do not want to live together."
10066 LOCATE 5, 12: PRINT "We do not want to live together."
10067 LOCATE 5, 13: PRINT "We want the Earth!"
10068 LOCATE 5, 14: PRINT "Whatever the cost..."
10069 LOCATE 5, 16: PRINT "Whatever the cost!"
10070 LOCATE 5, 18: PRINT "This means WAR!"
10075 FOR I=1 TO 3000:NEXT I:
10080 RETURN

Page 28 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

SOFTWARE

This article first appeared on Bitplane pages in September

2012.

After the appetizer of the previous tutorial, published on

issue 20 of RM and which led us to explore the basics of

language, we’ll now begin to analyze in greater depth the

power of ARexx scripting. As thoroughly illustrated, what

determined the success of REXX (and therefore ARexx)

was the fact that it could truly be a glue among the most

diverse applications and, since everything is based on

effective inter-process communications, it is necessary

to have constructs able to simplify and format the input/

output flows to arrive at a fast and efficient validation of

the text. That's why managing strings, i.e. alphanumeric

sequences of characters read in input or produced in

output, is one of ARexx's strengths.

For the purposes of our discussion, we will now introduce

some language instructions related to string management

that will allow us to create a (absolutely minimal) "syntactic

parser" (see box).

ARexx and strings

The absolute importance given to strings by the creators

and first users of language is clear from the quantity and

quality of the instructions that can be used to manage

them. In ARexx we can have, for example, constructs

capable of:

- edit: "compress (str, [list])" compresses the string by

removing the characters in the "list" from "str". Other

instructions deal with deleting, inserting or overlapping

strings or parts of them;

- compare: "compare(str1, str2)" determines the position

from which the two strings differ. Other instructions in

this "class" control whether a string is an abbreviation

of another or whether a string is contained in another;

- format: extract one string from another. This category

includes the "left" and "right" instructions given in the

following examples;

- work directly on the words: "words(str)" determines the

number of words contained in "str", "wordindex(str, n)"

determines the position from which the n-th word starts

in "str" while "word(str,n)" extracts the word "n" from

the string "str".

Then there is a particular command,"parse", which has

so many arguments that it can perform many of the

functions just mentioned by using user-definable

"templates". This greatly facilitates the usual mechanism

that involves reading the alphanumeric sequence of

characters and its subsequent elaboration and

decomposition into the "significant" parts of the sentence.

In total, the manual "Using ARexx on the Amiga" mentioned

in the previous article, reports over thirty functions

available only to effectively manage strings.

Let's start now with some examples (instructions in the

box) to better clarify what has just been expressed. In

these examples we assume for simplicity that we have to

process a string that we already know to be composed

of two words (we will then see why).

/* example 1 */

An introduction to ARexx – part 2
by Gianluca Girelli

Figure 1: The Count for VIC20

Syntactic parser

In linguistics and computer science the term

"parsing" or, more formally, "syntactical analysis", is

the process of analyzing a sequence of symbols

(tokens) or words to determine the congruence of

the grammatical structure in relation to a given

"formal grammar". More in detail, a parser is one of

the components of an "interpreter" (or "compiler")

and is used to check the syntactical correctness of

the language and to build its data structures.

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 29 of 65

SOFTWARE

pull phrase
verb=left (phrase, index(phrase, ' ')1)
name=right(phrase,length (phrase)
index(phrase,' '))

In the given example, after acquiring our string with the

"pull" statement and storing it in the "phrase" variable,

we divide it by assigning the first part of the string ("left")

to the "verb" variable and the second ("right") to the

"name" variable. The division is made assuming that the

two words are separated by a space, whose position in

the string is determined by the "index" statement. If the

string is therefore "take rope", our two variables will

assume the values of:

verb="TAKE" and name="ROPE".

Remember, in fact, that the "pull" statement is short for

"parse upper pull" and automatically converts the string

to uppercase.

The same identical result can be obtained much more

easily using a "template":

/* example 2 */
parse upper pull verb ' ' name

where the template consists of the sequence: "variable1

' ' variable2". Note that the two variables (in the code

called directly "verb" and "name") are separated by a

space enclosed in single quotation marks that, at run

time, will remove the space that separates the two words

within the string.

A more sophisticated way to extract too many spaces

from a string without using the sequence of single quotes

just mentioned is to combine the keyword "parse" with

the argument "var". This argument specifies that the

word after "var" is a variable and that all other words are

instead the "template" to be used to divide the string.

Because every word extracted, except the last remaining

word, removes the white spaces before and after the word

itself, we build our model by making the program believe

that the string contains one more word than it actually is.

/* example 3 */
pull phrase
parse upper var phrase verb phrase rest
name = phrase

What happens in this case is that our sentence is read in

input and inserted in the variable "phrase" ("pull phrase").

It is then converted to uppercase ("parse upper") and

the first word is extracted and assigned to the variable

"verb". Since "phrase" is also the second parameter of

the pattern, it would now contain all the rest of the string,

including the space between the two words.

By inserting a third variable (to be lost), the second word

also removes unwanted whitespace. In the end, for the

sake of clarity, the phrase content is assigned to the

variable "name", although this would not be necessary.

Let's now look at other examples using the templates:

/* example 4 */
say "Enter name and age, for example: Gianluca
Girelli,50"
parse pull name "," age
say " You say you are" name"," age "years old."

As you can see when launching the program, when ARexx

is waiting for input in the console, a simple blank line is

displayed.

Often, however, it is more "user-friendly" to display a

"prompt" (for example ">") to tell the user that they must

type something. This can be done with the OPTIONS

PROMPT statement as follows:

/* example 5 */
options prompt ">"
say "Enter name and age, for example: Gianluca
Girelli,50"Figure 2: DOS version of ZORK

Using the examples

As reported in the article on number 3, to use the

examples you have to save the script in text mode in

the format "name_script.rexx". To launch the script

just type from shell ">rx name_script.rexx" or, more

simply, ">rx name_script".

Page 30 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

SOFTWARE

parse pull name "," age
say " You say you are" name"," age "years old."

A simple parser to play with

At this point, unless you are fond of programming languages

for your own sake, you will be starting to get bored and,

since our motto continues to be "Remember when computing

was fun?", why not put some of these notions into practice

by having fun?

Personally, I've always been a big fan of textual adventures

ever since I played "The Count" with a friend's VIC20. As

you may recall, the beauty of those games was that they

told of worlds that took shape directly in our heads and

their limit was just our imagination. "The Count" recounted

the exploration of a ghost castle in search of the

"Count" (Dracula, of course) and the "navigation" within

the game was carried out by entering simple structured

sentences as in the first example of this article. Then came

"Zork" of the late Infocom and everything else went into

the background [see photo], since Infocom's syntax

analyzers could parse two lines of text....

Without wanting to mount our heads, however, thanks to

ARexx and its powerful string management instructions,

we can write our little parser and lay the foundations for

what will eventually be our game engine for textual adventures!

Suppose we need to issue commands to our text avatar

and have decided that these commands can only be in the

form of "verb" or "verb+name". Our parser will therefore

have to respect these rules and will basically take care of

dividing the string into its components, automatically

excluding empty strings (null command!) and those

containing more than two words as they are not consistent

with the rules of the given "grammar".

So let's look at the following subprogramme:

/**/
/* Syntax parser */
/**/
Parser:
if words =1 then
 select
when phrase='LOOK' then do
verb='LOOK'; name=''
end
when phrase='LIST' then do
verb='LIST'; name=''
end

when phrase='QUIT' then do
verb='QUIT'; name=''
end
when phrase='VOC' then do
verb='VOC'; name=''
end
otherwise say"I don't understand. try again"
 end
if words =2 then do
verb=left (phrase, index(phrase, ' ')1)
name=right(phrase,length (phrase)
index(phrase,' '))
end
return

The subroutine is identified by an initial "label" ("Parser:")

that serves both as the name of the subprogram and as

the logical address of reference for the call by the main

program and ends with the "return" statement.

The logic of this routine reflects what has been said

previously, therefore:

- if the string contains at least one word ("if words

(phrase)=1") the program checks if it is in the list of known

individual commands. In this case the command is assigned

to the variable "verb", otherwise an error message is returned;

- if the string is two words, proceed to its division as already

illustrated in the opening of the article.

We must basically note two things: first, because in ARexx

the variables are global, that is, accessible by anyone at

any time, if the string is composed of a single word, the

subroutine also takes care of resetting the variable "name"

so as not to trigger behaviors not foreseen by our logic;

moreover, the parser could also directly invoke the actions

to be performed once the string is deciphered, but we

chose to keep the two things conceptually separate.

At this point our syntax analyzer is ready to be used within

the main code which could look like the following and

which, although not directly related to the processing of

strings, has been inserted for the sake of clarity.

/* main code */
pull phrase
call Parser (phrase)
select
when verb='GO' then call Go(name, Pos)
when verb='LOOK' then call Look()
when verb='TAKE' then call Take(name)
when verb='EXAMINE' then call Examine (name)
when verb='USE' then call Use(name)

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 31 of 65

SOFTWARE

when verb='LIST' then call List()
when verb='VOC' then call Vocabulary()
otherwise say 'I don't know what it means '
|| verb
end

As can be seen from the code, once the string has been

read in input and analyzed thanks to our parser, depending

on the value of the variable "verb", the subroutine will be

invoked, possibly passing as a parameter the value of the

variable "name".

Note that in the case of "GO" the current position (contained

in the variable "Pos") to be updated will also be passed to

the navigation routine in addition to the "where" (eg: GO

NORTH).

Conclusions

The problem of formatting the input/output is as old as

the computer itself being intimately connatured with the

reason why computers were created, that is to help solve

problems quickly and effectively.

As we have seen, with ARexx this problem virtually does

not exist given the number, power and flexibility of the

instructions that deal with strings in this language.

I hope this article has shown how much fun working with

strings can be. With the simple use of a few instructions

we have in fact created our first parser, which could be

refined and enhanced infinitely.

If this reading gradually made you want to exhume some

old textual adventure, the links at the end of the pages will

be very useful. However, don't miss the next issues of

RetroMagazine as the "Programming with ARexx" section

is about to take on the appearance of "Game Coding with

ARexx". Deep down... do you remember when computing

was fun?

Have fun!

BIBLIOGRAPHY

- For the textual adventures of Scott Adams visit:

http://www.msadams.com/index.htm

- For the textual adventures of Infocom visit:

http://www.infocom-if.org/games/games.html

- For "ZORK" (MS-DOS) visit the Infocom website:

http://www.infocom-if.org/downloads/

downloads.html

- For "ZORK" on Amiga visit:

http://www.lemonamiga.com/

- For Amiga emulators visit:

http://www.amigaforever.com/

Figure 3: Cyber.rexx on AF12

http://www.msadams.com/index.htm
http://www.infocom-if.org/games/games.html
http://www.infocom-if.org/downloads/downloads.html
http://www.lemonamiga.com/
http://www.amigaforever.com/

Page 32 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

SOFTWARE

1 - Introduction
Last month, we saw an introduction to the Olivetti M20,

a rather peculiar machine from 1982 [1]. We spent some

time discussing the characteristics and the quirks of the

Professional Computer Operating System or PCOS. This

article describes how to use a comparatively modern C

compiler (specifically, a version of GCC) to develop software

for it.

One of the advantages of exploiting modern computers

and tools to program vintage computers is that we now

have beautiful text editors, excellent compilers and efficient

languages. A purist may argue that the true "1980's

experience" may be lost, but this is compensated by

countless advantages, especially for relatively large

projects. In the last few months, I have used this approach

for developing text-adventures. I have been able to exploit

the portability of the C language, targeting systems as

different as the Sinclair ZX Spectrum and the Olivetti M20

with almost the same source code.

I will describe in this article how to cross-compile for the

M20 in C on a Unix-like operating system such as Linux

or macOS. I do not have any Windows machine around,

but I think that for that operating system, programs such

MinGW or Cygwin may be useful. A convenient strategy

is to have on the developing machine both a compiler and

an emulator running for each platform. The required tools

(z8k-pcos GCC, m20disk, MAME) must be downloaded

and in some cases built from sources, so I hope you will

not be put off by things such as GNU make.

This article is organized as follows. I will start by briefly

describing the compiler and the MAME emulator for the

M20. Then, I will show how to use them to compile and

run some introductory examples. I will finally discuss how

to transfer the executables on the real hardware and run

them there. I will finally discuss a nontrivial example (a

small graphic demo) before drawing some conclusions.

2 - The C cross-compiler and the emulator
Many personal computers of the 1980's could be

programmed in one of the many BASIC dialects available.

The Olivetti M20 was no exception and came with a

reasonably complete Microsoft interpreter, called BASIC-

8000. Even if BASIC was a simple language and was easy

to learn, it was painfully slow in some situations. Moreover,

it was not very convenient for low-level operations, not

efficient for large projects and severely limited in many

areas. I started programming with BASIC on my VIC-20

when I was a child and I used it for many years on the PC

too, but I am not very fond of it. An assembler suite for

the Z8001 was available for the M20, but handling large

projects in assembly is often tedious, cumbersome and

the code is not portable, even if one can possibly write

extremely compact and efficient programs.

From the modern perspective, the C programming language

offers a good trade-off between execution speed, ease

of coding and overall efficiency on limited machines, being

a remarkably efficient compiled language. I will not

describe here the strengths and pitfalls of the C language

(many resources and tutorials are available on the Internet

for that), but modern compilers targeting 8- and 16-bit

processors exist. These are for example the cc65 for the

6502, the z88dk for the Z80, etc... For the Olivetti M20,

much work has been done in this direction by Christian

Groessler over several years. He created a version of GCC

2.9 dedicated to the Zilog Z8001 processor and PCOS,

from a compiler originally put together in 1998 by the

eCos group (then part of RedHat). His work included GNU

binutils as well as newlib.

GCC 2.9 does not support all the bells and whistles of

recent standards for C and C++, but it is still a very decent

compiler, much more powerful than the original Microsoft

BASIC available on the machine. Christian distributes the

compiler along with its sources for many Unix systems

on his FTP site [2], and wrote an introductory article,

which is available at [3].

One possible strategy to install the compiler is to use one

of the available binary distributions (Chris kindly prepared

packages for many Un*x flavours), or directly compile it

from sources. Once everything is done, you should install

the executables in /usr/local/bin or make sure that they

can be reached via current shell path. If the install has

succeeded, typing the following command should yield

the compiler version, as follows:

$ z8kpcosgcc version
2.9ecosSWtools990319m20z8k3

The compiler suite is composed of a collection of tools

that appear familiar if you are used to GCC. There are

versions that are dedicated to COFF executables, but we

will not use them on the M20. The tools dedicated to PCOS

start with the z8k-pcos prefix.

Probably, the most convenient way to cross-develop for

Cross-programming in C on the Olivetti M20
by Davide Bucci

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 33 of 65

SOFTWARE

a vintage computer is to have an efficient compiler paired

with an emulator, both available on the modern machine.

The second tool we are going to use is therefore MAME,

as from version v0.212, it started to partially support the

M20. The implementation is still slightly buggy, but remains

quite useful to rapidly test simple programs.

Benjamin Eberhardt has written a very interesting article

about how to use MAME to emulate an M20 [4].

MAME can be downloaded at [5] and among other persons,

many of the efforts done to emulate the M20 have been

done (once again) by Christian Groessler. After the

download, you will need a copy of the boot ROM code that

can be found at [6], as well as an image of a boot disk

containing PCOS, such as the one that is present in the

archives associated to this article [7]. Once MAME is

installed on your system and you have put the M20 ROM

in the current directory, it can be launched with a command

that has the following structure:

$ mame m20 bios 0 rompath . flop1 <image1>
flop2 <image2> window

Now that the main tools we need are ready, in the next

paragraph we are going to discuss, compile and run some

simple C programs on the emulator.

3 - Three 'Hello World' programs
Of course, the first program that one may use to test the

compiler toolchain is the very well-known Hello World

program:

#include<stdio.h>

int main(int argc, char **argv)
{
 printf("Hello World!\n");

 return 0;
}

If we call this file hello.c, the command to compile it is:

$ z8kpcosgcc hello.c o hello.cmd

A rather unpleasant surprise is that the executable is

16211 byte long. If it is tiny for today's standards, it is

relatively large for a 1982 computer and this size is not

acceptable for such a simple program. We must mitigate

this problem.

The culprit is the standard library and in particular the

implementation of the printf function. This function offers

very flexible formatting capabilities, at the price of

substantial code to be included in the executable. It is

worth noting that, even if the C compiler supports floating

point types such as double and float, the present

implementation of scanf and printf does not handle it.

For many practical purposes however, if one does not

need the formatting capabilities, printf can be skipped

completely. A more manageable 9963 byte long executable

can be obtained with the following code:

#include<stdio.h>

int main(int argc, char **argv)
{
 fputs("Hello World!\n", stdout);
 return 0;
}

To further shrink the size of the result, an interesting

technique (that makes the code non portable) is to exploit

a direct PCOS system call:

#include<sys/pcos.h>

int main(int argc, char **argv)
{
 _pcos_dstring("Hello World!\r");
 return 0;
}

Once compiled, this code yields a much more

manageable 2919 byte executable. This size is still

much greater than the one that can be obtained

with a pure assembly program, but can be acceptable.

A list of the PCOS functions callable from C can be

found in the pcos.h header, which closely follows

the description done by Olivetti in the manual

dedicated the assembly language suite [8]. The -Os

and -O2 options of gcc can be used and tell the Figure 1: Hello world output in MAME

Page 34 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

SOFTWARE

compiler to optimize the code respectively for code or

for speed. In both cases, the simple "Hello World!" program

yields a 2897-byte executable. Note in the last example

the use of the \r code, the newline used by PCOS in place

of \n.

In my experience, it is a good practice in C to adopt a

modular strategy and keep separated from the program

core the routines related to input and output. When porting

a relatively large program to a new computer, the latter

often require an adaptation. Non portable code (such as

PCOS system call) shall be confined in this part of the code.

If you would like to mix Z8001 and C code, or if you want

to use the z8001-pcos-as assembler alone, this is perfectly

possible. The compiler manual [9] includes some detailed

instructions about how to do that and contains many

example programs. If you are used to the Z80 assembly,

you may find it interesting to learn the Z8001, as it was

meant to be the 16-bit successor to the Z80, exploiting

a segmented memory paradigm and preserving a certain

degree of compatibility.

4 - Executing programs in MAME
In order to execute the Hello World program described

above, we need to transfer it first into a usable disk image.

MAME can read different types of disk images, the most

useful file format to be used with the M20 has the extension

IMG (in some older versions of MAME, only those in the

MFI format could be written). There is a certain number

of details to be considered when creating usable disk

images, due to the head 0/track 0 format that is different

from the rest of the disk in the PCOS disk organization.

As said previously, a good bootable image that can be

used with the emulator is the pcos20.img file, contained

in the archive available from [7].

We are going to need the m20floppy utility described in

[10]. Download and compile it with make, in order to

obtain an executable called 'm20'. Once created and

installed in your computer, to obtain a disk image called

hello.img, type:

$ m20 hello.img new

By the way, m20floppy supports several commands:

launch it with no arguments to obtain a brief description

of each of them. At this point, the disk image is not yet

usable, as the utility does not create the contents of head

0/track 0. They must be transferred manually from a disk

image that contains them. The disk image example.img

present in the same archive as the PCOS disk can be used

for that:

$ dd conv=notrunc if=example.img of=hello.img
bs=4096 count=1

Benjamin Eberhardt suggests in [4] a simple way to check

if a disk image contains the data corresponding to head

0/track 0 or not. You have to inspect the first bytes of the

file to see if they are different from zero. If the dd command

was successful, here is what you should obtain from an

image that can be successfully used in the emulator:

$ hexdump hello.img |head n 1
0000000 01 04 00 23 02 10 01 00 00 0a 00 c4
00 86 1e 00

and here is the result with an image that can not be used,

as track 0 data is missing:

$ hexdump bad.img |head n 1
0000000 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00

When you have a complete image of an empty disk, you

may want to copy the result to another file, to avoid having

to repeat the process each time. We can then add the

executable program to the disk image:

$ m20 hello.img put hello.cmd

You may check the contents of a disk image using the ls

command of m20floppy:

$ m20 hello.img ls
hello.cmd

Once the disk image contains the executable, we are

going to launch the emulator in a window, with a system

disk pcos20.img in the disk drive 0: and the image hello.img

in drive 1:. If both files are available in the current directory

that also contains the ROM file m20.zip, the command to

launch MAME is:

Figure 2: RS232 cable pinout

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 35 of 65

SOFTWARE

$ mame m20 bios 0 rompath . flop1 pcos20.img
flop2 hello.img window

If you have put the files elsewhere, change their paths

accordingly. In the emulator, after the machine has finished

booting, we can type 'hello' (or simply 'he') and the Hello

World program should be executed, as shown in figure

1. One may notice that we did not have to select the drive,

as one of PCOS's quirks is that if a file is not found in the

current drive, the other one is scanned, too. The last

accessed drive becomes the current one. If you have

problems with the keyboard layout, you can mitigate them

by running 'sl' that allows you to change the current

language. The command 'ps' saves the current PCOS

configuration and the save will be permanent, as recent

versions of MAME can write to file images in the img

format. If you want to have descriptions of the error

messages more explicit than a numerical code, you can

use the 'ep' command, at the expense of 1240 bytes of

free RAM. If you are getting mad at the backspace key

apparently misbehaving like a Carriage Return, in [1] I

suggested a simple fix for that.

The current state of the MAME emulation of the M20 is

that many things can be done, but the emulation may be

unstable (a warning message is in fact issued by MAME).

The emulator is invaluable nonetheless for preliminary

testing, as transferring files to a real machine is not

entirely trivial and requires some time and effort, as we

are going to see in the next paragraph.

5 - Transferring files to a real M20
There are different strategies available to transfer files

towards a real M20. If you have an MS-DOS computer

with a 360 KB floppy disk drive, you can use Dwight Elvey's

wrm20 and rdm20 routines, as described in [11]. There

are limitations, mainly because of the peculiar formatting

of the track 0/head 0, that is not handled by many disk

controllers in the PC world. Usually, a way to circumvent

them is to format a disk on the M20 and write it on the

PC using Dwight's tools, which simply skip the tracks that

can not be written.

In my case, I do not own a suitable PC and I preferred to

make an RS232 null-modem cable to attempt data transfer

with protocols such as XMODEM. Figure 2 shows the

connections of the cable. I represented the numbering

of pins in a male DB9 connector as they appear this way

on the solder side of the female connector to be used for

the cable. On the "modern" side, I used an USB-RS232

interface that I bought many years ago, working reliably

with macOS. I wrote a small collection of utilities in BASIC

described in [12] that can be used for this task. Starting

from scratch may involve copying a XMODEM receive

program on the M20 and then use it to transfer the more

involved tools. Instead of directly typing the program,

once the M20 is connected, one may redirect the input

and output of the PCOS towards RS232 with following

commands:

pl ci
rs
sc com:,9600,none,0,8,half,off,256
ci 0,o,0
+Scom:, +Dcom:

The first commands load the 'ci' utility as well as the

RS232 driver into memory and configure the M20 for a

9600 baud 8N1 connection, with no echo nor XON/XOFF

control. Then, a serial connection is open. Finally, the last

command redirects input and output towards RS232. On

your modern computer, if you configured the terminal

program correctly (I use Minicom), you should see the

PCOS prompt appearing in your terminal, replicating what

the M20 writes on the screen. This is a quite convenient

way to use the M20, as you can control the computer

remotely. You can for example launch basic by typing 'ba'

and copy/paste the whole xreceive.bas program. To do

this, you should first configure your terminal program to

apply a delay for each key. BASIC is not fast enough to

process data continuously fed by a modern computer

and the result would become mangled after a few lines.

On Minicom for example, type CTRL+A, then T and set

the 'TX delay' to 10 ms. You may save the transferred file

(as 'xmodem.bas'), then restart the machine and reissue

the first four commands seen above (as the I/O redirect

must not be active to transfer files with XMODEM) and

finally load and run 'xmodem.bas' within BASIC to transfer

files.

Figure 3 shows a file transfer between my MacBook pro

using Minicom and the Olivetti M20, thanks to a USB to

RS232 interface and the cable I built. Figure 4 shows the

Hello World program running on my machine.

6 - A non-trivial example: memory access for graphics
Of course, programming in C offers a great deal of Figure 3: File transfer in action

Page 36 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

SOFTWARE

possibilities and the code in listing 1 shows two functions

and a macro that can be used to draw on the screen by

directly accessing the memory (on a B/W machine):

- The 'scrclear' function clears the screen (there is no

difference between graphics and text modes on the M20,

the screen always displays graphics).

- The 'PSET_M' macro draws a pixel on a grid of 512x256.

- The 'line' function draws a segment with the Bresenham

algorithm [13].

The result can be seen in figure 5. Of course, such an

implementation may be improved, but gives an idea of

the expressiveness of the C language. If you really feel

the need to get your hands dirty, the gcc manual [9]

describes in detail the integration of C code with Z8001

assembly, taking for example different versions of the

'scrclr' function. As said earlier, if you already are familiar

with the Z80 assembly language, you may find yourself

at home with the Z8001, after all. Among the tools that

come with the GCC compiler, the z8k-pcos-as assembler

is quite powerful and convenient.

Conclusion
In this article, we briefly described how to cross-program

the Olivetti M20 focusing on the C language. After a short

introduction, we discussed the tools that we choose for

the task, namely a special version of GCC tailored for the

Z8001 processor and the PCOS operating system, as well

as the MAME emulator.

We then introduced the classic Hello World program and

we saw how to reduce the size of the executable produced

by the compiler. We discussed how to execute it in the

emulator and how to transfer files on a real machine. We

finished our discussion by presenting an example of direct

memory access. The compiler manual [9] written by Chris

is definitely worth reading if you want to go beyond what

I describe in this article.

By the way, I almost forgot! This article (as the one you

read last month) has been entirely written using Oliword

on my Olivetti M20. Text files have then been transferred

using RS232 on a modern MacBook Pro, where the final

editing has been done.

All the source code discussed in the article is contained

in an archive available at [7]. It contains disk images of

the discussed examples, as well as the Olivetti M20 version

(they are available for many 8 and 16 bit computers) of

two text adventure games I developed: The Queen's

Footsteps and Two Days to the Race. Enjoy!

Acknowledgments
I would like to thank Christian Groessler for the amazing

tools, the constant commitment to the M20, as well as

for the countless fruitful discussions we had in the last

fifteen years. Concerning the MAME emulator, I could

never be able to emulate an M20 without the help of

Benjamin Eberhardt, to whom I would like to express my

gratitude. Benjamin also kindly prepared the PCOS disk

images in the IMG file format and provided useful remarks

on early versions of this article.

This paper would have been probably awkward to read

without the kind and attentive proofread by Chris Carter.

The remaining errors are mine.

Figure 4: Hello world on a real M20

BIBLIOGRAPHY

[1] D. Bucci "The Olivetti M20 and the history of a

website" RetroMagazine World #2, August 2020.

[2] C. Groessler, personal FTP site: ftp.groessler.org

[3] C. Groessler, D. Bucci "Cross-programming for

the Olivetti M20 using GCC," available at http://

www.z80ne.com/m20/index.php?

argument=sections/download/z8kgcc/z8kgcc.inc

[4] B. Eberhardt, "Emulating the M20 with MAME,"

available at: www.z80ne.com/m20/index.php?

argument=sections/tech/mame_m20.inc

[5] MAME official website: https://

www.mamedev.org

[6] Olivetti M20 ROMs available at https://

wowroms.com/en/roms/mame/olivetti-l1-

m20/89051.html

[7] http://www.retromagazine.net/download/

m20inC_sources_and_disk_images.zip

[8] Olivetti "M20 Assembler language user guide,"

release 2.0, March 1983

[9] C. Groessler, "GCC Z8001 user manual," 2009,

available at: http://www.z80ne.com/m20/sections/

download/z8kgcc/z8kgcc.pdf

[10] C. Groessler, "Manipulate disk images,"

available at: http://www.z80ne.com/m20/index.php?

argument=sections/transfer/imagehandle/

imagehandle.inc

[11] D. Elvey "How to read and write disk images for

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 37 of 65

SOFTWARE

Figure 5: The result produced by listing 1

 short inc=MAX(ix, iy), plotx=x1,
ploty=y1, i, plot;
 short x=0, y=0;
 PSET_M(plotx,ploty); /* Plot the
first pixel */
 for(i=0; i<=inc; ++i) {
 x += ix;
 y += iy;
 plot=FALSE;
 if (x>inc) {
 plot=TRUE;
 x=inc;
 plotx+=SIGN(dx);
 }
 if (y>inc) {
 plot=TRUE;
 y=inc;
 ploty+=SIGN(dy);
 }
 if (plot)
 PSET_M(plotx,ploty);
 }
}
int main(int argc, char **argv)
{
 int i;
 fillscr(0);
 for (i=0; i<512; i+=10) {
 line(0,0,i,128);
 line(0,255,i,128);
 line(511,255,i,128);
 line(511,0,i,128);
 }
 return 0;
}

Listing 1: C code for direct access to video
RAM

/* Segment #3: begin of video RAM for a
B/W machine*/
unsigned short *screen = (unsigned
short *)0x3000000;
#define SCREEN_WIDTH 512
#define SCREEN_HEIGHT 256
#define SCREEN_SIZE (SCREEN_WIDTH /
16 * SCREEN_HEIGHT) /* words */
#define ABS(a) ((a)>0 ? (a):(a))
#define MAX(a,b) (((a)>(b))? (a):(b))
#define SIGN(a) ((a)>0 ? 1 : ((a)==0 ?
0 : (1)))
#define TRUE 1
#define FALSE 0
/* Fills the screen memory with a
defined word. */
void fillscr(unsigned short p)
{
 unsigned short *s;
 for (s=screen; s <
screen+SCREEN_SIZE; ++s)
 *s = p;
}
/* Just turn on a pixel by accessing
directly to the video RAM. */
#define PSET_M(x,y) *(screen +
(((y)<<5) | ((x)>>4)))|=1<<(15((x) &
0x000F))
/* Plot a line using the Bresenham
algorithm.
 from Nelson Johnson, "Advanced
Graphics in C"
 ed. Osborne, McGrawHill 1987. */
void line(unsigned short x1, unsigned
short y1,
 unsigned short x2, unsigned short
y2)
{
 short dx=x2x1, dy=y2y1;
 short ix=ABS(dx), iy=ABS(dy);

the M20 system," available at: http://

www.z80ne.com/m20/index.php?

argument=sections/transfer/imagereadwrite/

imagereadwrite.inc

[12] D. Bucci "Transferring files using a RS232

connection" http://www.z80ne.com/m20/index.php?

argument=sections/transfer/serial/serial.inc

[13] N. Johnson, "Advanced Graphics in C," ed.

Osborne, McGraw-Hill 1987.

http://www.z80ne.com/m20/index.php?

argument=sections/download/z8kgcc/z8kgcc.inc

Page 38 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

RETROHISTORY

Japan 13th episode:
 Nintendo G&W, a challenge to immortality.

by Carlo N. Del Mar Pirazzini, Giorgio Balestrieri, Michele Ugolini

rest on a sturdy base, although isolated from it.

Constructions that rise to the sky using highly

technological synthetic materials, anti-seismic, made

in Japan, equipped with a certain year of birth and a

predetermined year of demolition. Studies of

materials that every year improve their technology,

reinventing themselves, after absorbing previous

mathematical models. This is tremendous from an

Italian point of view: in Italy the same homes are

frequently repaired "in saecula saeculorum", often

with the same techniques and materials as in

previous years. Why am I dwelling on these points?

The reason is simple, Japanese constructive

dynamics reflect the same "modus operandi" also on

G&Ws.

As a good curious man I have always looked and I

have always been fascinated by Japanese

construction sites, since I have had the "pleasure" of

absorbing so many earthquakes. In fact, often,

finding myself at various levels of height of a

building, facing the windows, I was muted,

frightened and amazed to see the skyscrapers

swaying among them, not as thin grass, but as

imposing mental challenges that contrasted, live, the

powerful physical rules of Nature. Equally solid and

perfectionist seem to be the constructive

foundations of the G&Ws. Deep down, the G&Ws are

anchored to their sacred origins, "inescapable" just

like the soul of the Japanese. On the surface, they

experience the evolutionary stress of impressive

graphics (see Playstation and Xbox, see figure 1),

Dear readers, welcome to this special review of

RMW25.

Here is the playlist of the topics covered:
A) Introduction

B) Giorgio Balestrieri's collaboration with MADrigal

(aka Luca Antignano)

C) Mario's Cement Factory porting

D) GIG Tiger returns

E) Cuphead porting

F) Are there other simulators and emulators?

G) Nintendo G&W 35th Immortality Challenge

H) Conclusions

We will talk about the past, present and future of

G&Ws. We will talk about the immortality of these

electronic wonders, born of Japanese genius and

powered by numerous enthusiasts who, on a

planetary level, continue to invest energy and

money in these sacred objects. This time we will

talk in two: the article will be written by us two

editors: Michele Ugolini and Carlo N. Del Mar

Pirazzini.

A third editor of RMW , on this occasion, will be

interviewed: the lights will be focused on our

Giorgio Balestrieri.

A) INTRODUCTION
Michele:
Talking about Nintendo in Japan means talking

about the solid building bases of their building.

Base based on reinforced concrete. Structures that

Figura 1

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 39 of 65

RETROHISTORY

taking blows on blows, oscillating because of the

earthquakes of modern marketing. Shocks on

shocks, without bowing to failure. Unbelievable.

I have always been fascinated, in addition to their

buildings, also by the "stylized immortal soul" of the

G&W, so impressive in its functionality, equipped

with such bold security that, with a straight back, it

can challenge the powerful and inexorable laws of

Time! In fact, the date of demolition, or rather,

abandonment, of this ambitious and imperturbable

project of cyclical reinvention of G&Ws has not been

defined. Therefore, it seems to be a challenge to

immortality: here is the title of this review. In this

article, with the collaboration of Carlo N. Del Mar

Pirazzini and Giorgio Balestrieri, various topics

related to Game&Watch will be discussed: we will

discuss the solid development that to date, 2020,

seems to be heading seriously towards the future.

Carlo N. Del Mar Pirazzini:
Early '80s, roaring years. Nintendo released that

series of "scacciapensieri" (italian word that can be

roughly translated as ‘free your mind’) known as

Game & Watch.

I loved Mario and Donkey Kong. I loved these magic

boxes that made us dream of worlds, adventures,

challenges...

A time box that will always be in my memories.

These memories of mine were awakened thanks to

the passion of many fans. Today I analyzed two

ports, just released: Mario's Cement Factory

converted to C64 and the tribute to Cuphead.

The timebox has been opened!!

Have a nice trip.

B) GIORGIO BALESTRIERI'S COLLABORATION WITH
MADRIGAL (AKA LUCA ANTIGNANO)
Michele:
RMW: "Giorgio, welcome to this interview with

RMW25, today the honors go to you who

collaborated with the brilliant Luca Antignano for the

G&W porting. How was your collaboration born?"

GB: "Hi Michele and thank you for giving me the

opportunity to experience being 'on the other side'

in an RMW interview. The collaboration with Luca

began in the early months of 2017, when I wanted

to start playing again with the G&W who had

cheered up my days as a teenager (i.e. 30-35 years

ago). I had known Luca's crazy project before, but I

had never really tried it before those fateful months

when nostalgia took over. At that time I used Linux,

in the form of Ubuntu Mate, as the main OS for some

years now but the MADrigal emulator package was

distributed only for Windows systems. After a few

tests, I discovered that I could easily run them on

Linux using Wine and I wrote to Luca to give him

feedback on my experiments. Talking to him, I

discovered that there was a G&W core per bookshelf,

created by Andre Leiradella and released as an

opensource, which I could use to run the simulators

natively under Linux. Hence the idea of trying to

make them available also for RetroPie, the main

distribution for retrogaming on SOC systems and

beyond."

RMW: "What porting have you tried? Which software

and hardware assets did you adopt and above all

what problems or bugs did you have to deal with?"

GB: "Actually, I didn't do any porting, the real

Figura 2

Page 40 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

RETROHISTORY

transposition work had already been done by

Andre, I just incorporated it on RetroPie and, while

I was there, on OrangePie (the version of Retropie

for SOC Orange). Andre had created the G&W core

to be included in libretro, the RetroPie's main

multisystem emulator, and a transpiler to convert

the Delphi sources of Luca's games into LUA that,

once compiled, could be seen as "roms" and run

thanks to the libretro G&W core. As I said, my

contribution was simply to package everything so

that it could be installed and used through

RetroPie."

RMW: "Was there anything curious or noteworthy

you noticed during your work? Minimal or

important differences between the two Orange/

Raspberry systems?" (see Figure 2)

GB: "No, actually getting a working version of the

simulators was a fairly straightforward process on

both platforms. Both RetroPie and OrangePie are

based on Debian Linux, so once you retrieve the

libretro-gw sources from GitHub, compiling them

was pretty simple; the maximum difficulty was

finding the libraries needed for the process, but

absolutely not complicated, Andre did a great job.

Among other things, in today's versions of

RetroPie the need to recompile the G&W core is no

longer necessary since this core is already

available in the distribution by default, but at the

time only a rather old version was included and in

order to run the full Luca’s package it was

necessary to compile everything by hand. The idea

behind my Retro/OrangePie package actually

comes from here, from the desire to quickly and

easily make available the G&W simulated by Luca

to all users of these retrogaming distributions. To

simplify the installation as much as possible, I was

able to create a single executable file of a few tens of

megs to be copied to the target machine, launch and

wait for it to finish its work. At that point we found

ourselves with an updated G&W core, all the

simulators installed and all the snapshots available,

there was nothing left but to play. I'm talking about

the past because the last time I took care of

updating my installation package was in 2019; I

should probably take a look at it and see if anything

else needs to be touched up. Luca in the meantime

has stopped producing simulators but libretro has

moved on, maybe there are some adjustments to be

made."

RMW: "Do you have any anecdotes or curiosities

related to the world of G&W? Do you collect them

and if so, do you have any rarities or are you hunting

any G&W in particular (maybe some readers could

help you in the hunt)?"

GB: "An anecdote yes, involving both G&W and

myself. I remember that at the age of 16 or 17 I was

on the beach with my parents and I had brought a

G&W to spend time under the umbrella. It was one of

the multiple-screen ones, that type of G&W that

were able to show different game frames depending

on the level, turning on and off some graphics of the

screen appropriately. This in particular had a small

pirate as the protagonist (see Figure 3) who in a first

phase of the game had to transport a series of

bombs from the pirate ship to a cave along the

screen from left to right and in the second one load

the treasures stolen from the cave on the ship

traveling from right to left, showing a different

Figura 3

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 41 of 65

RETROHISTORY

screen for each phase thanks to the “trick” mentioned

above.

Well, the point is, after a while I was so focused on the

game that I literally forgot where I was and what was

around me, so caught up in the action.

After quite some time (I think a couple of hours), I

managed to beat the game, accumulating so many

points that I zeroed the score and stopped.

Reacquainted with the knowledge of reality, I realized

that practically all the umbrella neighbors were

watching me with expressions between the curious

and the amazed: following the game rhythm, faster

and faster, I had taken an absurd pose on the

deckchair and had started to move my hands and

fingers frantically, with very fast clicks, which

attracted the attention (and concern) of those around

me. Today such behaviour is not surprising, given the

sometimes pathological relationship with

smartphones, but at the time I seriously risked

someone throwing a bucket of water at me to make

me “recover”...

As for the G&W collection, I do have some, I'm a

console collector and I've got most of them from

Channel F to PlayStation 4, but I don't collect G&W,

the ones I own I just took to change the fleet a bit. I'm

basically only oriented towards consoles, both

because some of them I can program, and because

it's thanks to video games that I discovered what I

wanted to do in life.

My first console was an Atari 2600 on which I spent,

like many of my generation, an unworthy number of

hours playing.

Then, as a good pre-teenager, I wanted to understand

what video games were like, which led me a few years

later to discover the wonderful world of programming,

whose art later became my profession."

Oh, that's good. We thank our Giorgio for the funny

anecdote, the valuable interview and the important

work done, donated to the G&W community (see

figures 4 and 5). Now the road map continues with

other curious and delicious stops.

Figura 4

Figura 5

Page 42 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

RETROHISTORY

C) MARIO'S CEMENT FACTORY PORTING
Carlo N. Del Mar Pirazzini:

Mario's Cement Factory (see Figure 6)

Publisher: hayesmaker64

Year: 2020

Genre: Game & Watch/Platform

Platform: Commodore 64

Iconic. Difficult to find a different word for Mario

and Game & Watch.

This conversion is based on the original game,

released in 1983 developed for Nintendo Game &

Watch under the guidance of that genius Gunpei

Yokoi.

Converted for Gameboy, Gameboy Advance and

for Nintendo DSi is considered one of the

strangest games in Mario's franchise.

The player controls Mario at work in a cement

factory, where he will have to fill concrete mixers

with concrete falling from the assembly line.

You will have to do it quickly and without making

them overwhelm under the eyes of the employer.

To do this, you will need to activate the levers on

three levels that will allow them to descend into

the truck.

This C64 port was made in Assembly and I must

admit it maintains the same frantic spirit as laptop

gameplay.

The difficulty curve is always gradual, and you let

yourself play pleasantly.

Fast and well structured, I'm sure it will give a

good dose of fun to those looking for a quick game

to charge to relax.

The only flaw is obviously the repetitiveness that

affects global longevity, but it is to be considered

an excellent port.

Final judgement

Gameplay: 80%

It embodies the spirit of Game & Watch and puts it in

a C64. Well developed.

Longevity: 65%

It has the spirit from Game & Watch, it must keep

you glued together for a few minutes. Otherwise in

the long run can be tiring.

D) GIG TIGER RETURNS
Michele:

Dear readers, there are great news. The Gig Tigers,

the portable video games that made the history of

the 1990s, are coming back.

Here's the preview from "The Verge":

https://www.theverge.com/2020/2/19/21136607/

hasbro-tiger-electronics-lcd-handheld-games-xmen-

sonic-transformers

Hasbro has announced that they will be available in

the United States starting next summer 2020. Stop!

Stop! Everybody stops! It's already 2020 and it's

autumn! In fact, this very fresh news is dated

February 20, 2020.

We haven't talked yet about this due to damn

Covid19. Then it all fell into oblivion.

Tiger Electronics, portable video games that became

famous in the 1990s and known in Italy as Gig Tiger,

unfortunately did not arrive in summer 2020. The

initiative promoted by Hasbro included four games:

The Little Mermaid, Transformers Generation 2, X-

Men Project X and Sonic the Hedgehog 3. They were

Figura 6

https://www.theverge.com/2020/2/19/21136607/hasbro-tiger-electronics-lcd-handheld-games-xmen-sonic-transformers

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 43 of 65

RETROHISTORY

bookable by GameStop in the United States for

$14.99 each. Probably in Europe the price would

have been 13.99 Euro. At the time, the price of the

glorious Tiger GIGS was twenty thousand lire. The

price of the remake seems good.

No information had been released regarding the

sales expansion in Europe, the official news would

only be provided at the toy fair in New York. As

Morpheus said in the Matrix: "Fate, as we know,

does not lack a sense of irony." The updates of

these games were soon overwhelmed by the tragic

news that we all know.

In this link the official information so far not

updated. (see Figure 7). Available, but

unfortunately still frozen:

https://nypost.com/2020/02/19/hasbro-

bringing-back-beloved-1990s-toy-tiger-

electronics-hand-held-games/

Tiger Electronics created, many years ago, also

the "Furby", the "Game com" console, the

interactive robot "2-XL"(based on audio cassette),

the "R-Zone" and finally this line of handheld LCD,

similar to the famous Nintendo G&W. The Tigers

were very small consoles with a monochrome Lcd

display and a sturdy shell: they looked

indestructible. Each console was equipped with a

single video game with attached mini speaker for

music and effects. Ergonomically they were well

designed, the solidity was undisputed, the audio

was acceptable, and the price was competitive.

Nintendo had found a worthy rival in this sector.

Will the presence of THE TIGER GIGS in those

days have stirred upheaval in the house of the

great "N"? My opinion is: no. Nintendo was proud

about other clones, in fact in the house of the great

"N" there was obviously a Japanese philosophy that

recited: marketing only recalls further marketing.

At the time, the Tiger versions were numerous:

Street Fighter, Double Dragon, Golden Axe,

Castlevania, Robocop, Hook, Spider-Man, Batman,

Flash, Snow White and the Seven Dwarfs, The Little

Mermaid and even a game dedicated to Michael

Jordan! From the early eighties to 2003, the year of

disposal, 184 games were created, which can be

consulted in the catalogue of the Handheld Museum

website:

http://www.handheldmuseum.com/Tiger/index.html

Tiger Electronics was founded in 1978 and produced

its LCDs independently until 1998, when it joined the

large Hasbro family. Today, in 2020, Hasbro himself

sensed the widespread nostalgia for these sacred

objects (at least for us as collectors). Here it is,

finally in 2020 the Hasbro Tiger LCD was born.

Unfortunately, it was born in a very complex

historical moment. We all hope that an effective

solution will be found against this bloody epidemic,

so that they can restart all the world's productions.

Let us not despair, everything has been slowed

down, the damage is great, the losses and pain are

immense, but not everything is lost. In the

meantime, to deceive the time, I'll let you know of a

glamorous curiosity: many Tiger GIGS are perfectly

emulated thanks to Jason Scott who with his team

has made available "Handheld History", an archive

on the web that allows you to emulate about 60 of

those titles on our browser.

The project is updated from time to time with new

games, many of which seem to be as perfect as the

Figura 7

https://nypost.com/2020/02/19/hasbro-bringing-back-beloved-1990s-toy-tiger-electronics-hand-held-games/
https://www.handheldmuseum.com/Tiger/index.html

Page 44 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

RETROHISTORY

original ones. Here is the link:

https://archive.org/details/handheldhistory

E) CUPHEAD PORTING
Carlo N. Del Mar Pirazzini:

Cuphead: Game and Watch Edition

Publisher: independent

Developer: Simon Delavenne, At0mium, Heelio

Genre: Platform

Platforms: Web

A tribute to a jewel that itself proves to be a

precious gem. (see Figure 8)

This web version of Cuphead is a pleasant surprise

to all fans of G&W and the title developed by

MDHR.

A game developed with the Unity WebGl engine,

which recreates on your screen the typical G&W of

the past and puts you at the helm of the funny

Cuphead grappling with a terrible carnivorous

plant that throws feathers to jump and, at the

same time, will try to capture you with its

branches.

Well made, with few commands (right, left, on top

of a key used for the start of the game) and above

all very playable.

What can I say, maybe a little monotonous, but

definitely effective.

A tribute to one of the best run'n gun games of

the last 10 years.

Final judgement

Gameplay: 85%

Simple and linear. Well developed.

Longevity: 65%

The level of difficulty increases and unfortunately

also the desire to try somethingelse. But fun.

F) ARE THERE OTHER SIMULATORS AND
EMULATORS?
Michele:

In the last issue we talked about the brilliant Luca

Antignano (aka MADrigal).

Have you visited all its valuable links and checked all

the material on the sites it has provided us with?

It's an extraordinarily voluminous job, isn't it?

Amazingly there is still G&W emulation and

simulation material on the web ready to meet our

further needs.

Mame is probably the best-known easy to use

platform. Maybe it's the most convenient choice ever.

He deserves a specific chapter. I will probably talk

about it in the future, when a dedicated review is

created, comparing Mame together with the

particularities of G&W such as unofficial porting,

clones, rarities, etc.

In this paragraph I will only talk about the possibility

of playing with a G&W/Handheld through platforms

independent of MAME.

Obviously not all possibilities: this fantastic world of

G&W is changeable, some projects are born, others

perish, others are merged, it is extraordinary to think

that these small objects can enjoy such health and

excellent foresight in marketing! (see Figure 9)

We can start from Retropie/RetroArch abundantly

present on the web.

E.g. lr-gw. It's a simulator and not an emulator. This

means that the games you can play with are not

Figura 8

https://archive.org/details/handheldhistory

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 45 of 65

RETROHISTORY

actually the original games, but recreations of the

games. Here's the link:

https://retropie.org.uk/docs/Game-%26-Watch/

Here you can find the emulator:

https://github.com/libretro/gw-book

Here you will find explanations for emulation:

https://youtu.be/DzbsfCC77IQ

Want to play with G&W via Java? Nothing more

immediate. LCDgame.js is an open source

JavaScript library that currently supports

authentic representations of Donkey Kong II and

Mario Bros.

Here's the link:

http://bdrgames.nl/lcdgames/

Being all opensource you can easily collaborate on

the beautiful and streamlined project:

https://github.com/BdR76/lcdgame.js

Let's turn to another very interesting project: HQ.

Here's the link:

http://www.emulator3000.org/hq.htm

Handheld Quake, simulator of Soviet and foreign

portable games.

Honestly, I find this project nice because it can be

used with both Linux and Windows. The list of

Russian games is: Mysteries of the ocean, Just you

wait!, Merry cook, Explorers of space, Autoslalom,

Merry arithmetics, Space flight, Fisher tom-cat,

Hockey, Fowling, Space bridge, Rhythm.

The list of Nintendo games simulated through this

platform is as follows: Chef, Egg, Octopus, Fire,

Mickey Mouse.

Try it. You're gonna love it. Let's hear it for the

developers. Congratulations very much!

Let's not forget about Pica Pic, Hippopotamus.

They are G&W that can only be played online, taking

advantage of Adobe Flash.

The creators are Polish and have created a fun and

immediate site for a fast gameplay! Here's the link:

http://www.pica-pic.com/

Their old site was this:

http://www.hipopotamstudio.pl/

Want to talk about Android?

Every now and then G&W/Handheld is added to

Google play. Just type "Alice game & watch" and one

of the G&W I love comes up! The creator

"datsuryoku_k" of Kanagawa, Japan, has developed

many games and some of them are really fun. I will

leave you the pleasure of browsing the full list of

results. Some developers have been very good,

others very questionable.

Other creators to mention? Definitely: AviSoft,

Pixelegend, Lapigames, Mascot1039, Yanmania,

Million Rabbit Studio, Short2Games, etc.

The more you navigate the suggestion links and the

further you move away from the purist concept of

G&W... it's up to you when to stop your journey to...

well... the dark meanders of bad taste!

Shall we talk about Zophar? Here's the link:

http://www.zophar.net/gw.html

Figura 9

https://retropie.org.uk/docs/Game-%26-Watch/
https://github.com/libretro/gw-libretro
https://youtu.be/DzbsfCC77IQ
http://bdrgames.nl/lcdgames/
https://github.com/BdR76/lcdgame.js
http://www.emulator3000.org/hq.htm
http://www.pica-pic.com/
http://www.hipopotamstudio.pl/
https://www.zophar.net/gw.html

Page 46 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

RETROHISTORY

You'll find plenty of games ready to download.

They work with Windows. The list is attractive:

Armor attack, Ball, Balloon fight, Banana sbang,

Camelot, Circus circus, Donkey angler, Donkey

kong, Donkey kong circus, Donkey kong 2, Donkey

kong jr, Dungeons and dragons.

Finally, pay attention to some broken links and

abandoned projects. For example:

http://www.handheld.remakes.org

Is that enough? I'm pretty sure I haven't listed all

the gameplay possibilities for these amazing

G&Ws. I'm sure that in the next review there will

be more material. Help me in the hunt, dear

readers!

G) NINTENDO G&W, IMMORTALITY CHALLENGE
Michele:
Just as I was writing this article, this

announcement from Nintendo appeared on the

afternoon of September 3, 2020: "The classic

console that revolutionized the world of video

games makes its return! On the 35th anniversary

of Super Mario Bros., don't miss Game & Watch:

Super Mario Bros."

It seemed incredible, I was writing an article

entitled "G&W, Challenge to Immortality" and

Nintendo revealed the news of an official G&W

remake, as well as other games, for the 35th

anniversary of the birth of Super Mario Bros.

These are real projections into the future!

Here are some links:

https://www.nintendo.it/Notizie/2020/sepmbre/

Guarda-subito-il-Super-Mario-Bros-35th-

Anniversary-Direct--1836547.html

https://youtu.be/a8DJpeCy8CQ

The advertisement reads: "Overcome chasms, step

on the Goombas and enter the tubes just as you

remember, but with even more precise controls

thanks to the console's + push-button panel. Play

alone or alternate with a friend for some healthy

competition!"

Then again: "Looking for a bigger challenge? Then

don't miss Super Mario Bros.: The Lost Levels! If you

prefer a more relaxed experience, Ball (with a special

touch of Super Mario) is for you! "

Finally it concludes: "The included digital clock can

play 35 different animations, which also include

some of Mario's friends and enemies! Keep an eye on

the console even when you're not busy saving

Princess Peach."

Exactly, that's right, Nintendo will celebrate its most

famous brand: Super Mario Bros. (see figure 10)

An official, exclusive, limited G&W dedicated to Mario

will be released on November 13. Along with the

game, in the G&W there will be some levels "The lost

levels" that we remember. In Japan they came out

with the title "Super Mario Bros 2" and finally there

will be the classic version of Ball with Mario's face

instead of "Mr. G&W".

We'll find our funny Mario-juggler ready to intercept

the balls falling from above. The watch will also be

present. A very special watch, apparently.

A note dear to all of us collectors. You know the

FamiCom pads? Well, this G&W will have the shape

and color of those pads! It seems that there will also

Figura 10

http://www.handheld.remakes.org/
https://www.nintendo.it/Notizie/2020/settembre/Guarda-subito-il-Super-Mario-Bros-35th-Anniversary-Direct--1836547.html
https://youtu.be/a8DJpeCy8CQ

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 47 of 65

RETROHISTORY

be various software customizations, graphic

setups and especially adorable easter eggs to be

discovered as we found Mario's underground

pipes.

Nintendo has officially released on November

13th. The price seems to be around €50. Surely

the preorder will become a hot place of battle,

therefore, open eyes dear readers. Besides, it

seems that FamiCom will be the official adopted

style, but remember that some versions of the

past Nintendo Mini had different shells and games

depending on the place of sale: Asia rather than

America rather than Europe. I am very curious to

know the sales volume of this remake. (see figure

11).

Stay tuned to this news and keep in mind the rules

of the game around which, in a very short time,

millions of dollars will revolve:

Sony: Playstation 5,

Microsoft: Xbox Series X,

Nintendo: Game&Watch.

Well, we shouldn't laugh. In the house of the great

"N" nothing is done by chance. However, only the

future can tell us about the past and above all the

outcome of the G&W challenge... to immortality!

H) CONCLUSIONS

Michele:
We talked a lot. The G&W world is so vast that more

delicious news will arrive shortly. I'm sure of it.

Moreover, for us collectors, given the recent news, it

is a hectic period.

Instead, I bet Nintendo is in a moment of relaxation:

enjoy your earnings before announcing new ultra-

powerful consoles, ready to challenge Sony and

Microsoft with elegant lightness. Do G&Ws challenge

immortality? There's no doubt about it.

Will they win this challenge too? Who knows?

Carlo N. Del Mar Pirazzini:
Wipe the dust off these items, install or try the

games we reviewed here. It is a dive into the past

and a leap into beautiful memories... and above all a

challenge against yourself!!

Are you still able to beat the yourself of 40 years

ago??

Figura 11

Page 48 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

HARDWARE

After the first introduction of the previous article (part

1), where we saw how a computer is structured and what

are the basic components that serve its operations, in

this second part we will analyze how the CPU interfaces

with memory and Input/Output (I/O) devices.

The data communication within a computer takes place

through digital electrical signals, which can take a “high”

or “low” value, indicating a value of “1” or “0”, respectively.

This type of signal is not only used for the exchange of

information but also for the activation or deactivation of

devices external to the CPU: since a computer worthy of

its name is composed of several chips, it is necessary to

design a process so that the processor can select from

time to time the chip with which it intends to exchange

data. Fortunately, we do not have to invent anything

because there are people who did it for us: it is a family

of well known integrated products and used for a long

time, namely the 7400 family, presented in 1966 by Texas

Instruments as an economical version (in plastic packages)

of the 5400 family, introduced 2 years earlier. This

integrated TTL family contains AND, OR, NAND operators,

address decoder, flip-flop, buffer, inverter and more logic

port chips. When you hear that computers from the '60s

and ‘70s were built using TTL logic, well you may find

that they were assembled using just tens, hundreds, of

these integrated singles. IBM, Olivetti and other

manufacturers built entire computers with TTL logic. A

famous computer based on TTL logic was Computer

Terminal Corporation (CTC) Datapoint 2200: its CPU,

instead of being composed of a single chip (both Intel

and Texas Intruments had initially been asked to build a

CPU on a single integrated but neither company was able

to meet CTC's timing and technical requirements) was

composed of 100 7400 logics (Figure 1). I mention this

computer, built from 1970 to 1979, because the logical

scheme of its CPU was the seed of Intel's x86 architecture.

Back to the 7400 family, I selected the IC 74HCT139, a

2-to-4 address decoder, meaning that with 2 inputs you

can select one of 4 outputs available. This is easy to

understand using the powers of 2: since a digital signal

can only take the values of 0 and 1, that is 2 distinct

values, 2 inputs can direct 2^2 = 4 outputs. The abbreviation

of the integrated is composed of 3 parts: 74-HCT-139.

“74” is the series, “HCT” indicates the family and “139”

identifies the integrated chip. The family identification

code is very important because over the years several

series have been produced, each compatible with the

levels of transistor outputs used in that period. In order

for a computer to work, it is important to use integrated

devices of the right family, whose types and voltage levels

are compatible with the main computer chips (CPUs,

audio and video chips, peripherals). Since all the

aforementioned chips in the LM80C have been selected

as CMOS (the construction technology of the transistors

that make them up), I have selected 7400 series integrators

belonging to the HCT family, an acronym that indicates

integrations made in high-speed CMOS technology and

low power consumption. It is good not to mix up different

families: so if you want to replicate the computer, but also

buy the components to repair yours, get 7400 logics and

integrated all of the same type, in the case of the LM80C

type CMOS (they can be recognized because in their

acronym they have a “C”, for example Z84C0008PEG for

a Z80 version CMOS at 8 MHz maximum frequency). For

convenience, from now on, 7400 series integrators will

be indicated without center letters, assuming they are all

from the HCT family.

Figure 2 shows the decoder with the essential connections

to its operation. Pin “E” (for “Enable”) is the pin used to

enable, i.e. select the IC; pins A0 and A1 serve as selection

inputs and the combination of signals on them determines

which output, showed by pins O0..O3, it's activated. Let

me point out one thing here: you can see that on some

pins there is a circle-shaped symbol (in other CADs or on

other built-in profiles you can find other symbols, for

example a triangle). That symbol indicates that the signal

is “active LOW”: this means that for the IC to recognize

it as active it needs to be at a low level, or “0” to be clear.

Let's go back to the previous article and the pinout of the

Z80. You will remember that among the control pins of

the CPU system there were 2 with the abbreviations MREQ

and IORQ: the first is active when the CPU wants to access

the memory, that is, the address presented on the address

bus is intended for a read or write operation in memory,

The LM80C Color Computer
A 2019 self-built Z80-based home computer - part 2

by Leonardo Miliani

Figure 1: Datapoint 2200: its CPU consisted of 100
7400 series integrators

(photo: Wikimedia Commons)

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 49 of 65

HARDWARE

while the second is active when the CPU wants to perform

an operation involving a peripheral chip. We have seen

that both the Z80 integrated family and the 7400 series

integrated ones recognize as active signals those that

have a low value: it is easy to understand that all we need

to do is connect the Z80 MREQ pin with the 74139 enable

pin: when this line goes low, that is, the Z80 will request

access to memory, the low level on this pin will enable

the 74139 decoder.

If you remember the specifications of the LM80C computer,

the memory consists of 32 KB of ROM and 32 KB of RAM.

The first one fills the address space (in hexadecimal) from

$0000 to $7FFF while the second from $8000 to $FFFF

(this is because the Z80, after a reset, starts to execute

the instructions starting from the address $0000, that's

why the ROM must be in the lower part of the address

space). To address 32 KB of memory, or 32,768 cells, you

need 15 lines: in fact, 2 ^15 from your own 32,768. Now,

since the address bus consists of 16 lines, it's easy to

understand that we can use the 16th line as the selector

of the 32KB memory bank that we want to access. In fact,

the addresses $0000 and $7FFF, assigned to ROM, in

binary these become 0000.0000.0000.0000 and

0111.1111.1111.1111 respectively; similarly, the

addresses $8000 and $FFFF, assigned to RAM, are coded

in binary as 1000.0000.0000.0000 and

1111.1111.1111.1111. It is easy to understand therefore

that the sixteenth bit (highlighted in bold) assumes the

value 1 only when we access an address belonging to the

upper half of the address space (i.e. from the cell $8000

included onwards) so we will make sure that pin A15 of

the CPU selects the ROM when it is at a low level, and the

RAM when it is at a high level. This is done by connecting

it directly to pin A1 of the IC 74139. The A0 pin, on the

other hand, we can connect it directly to ground, so that

it always has a fixed value and the selection takes place

exclusively with the change of status of the other pin. On

the input pins of the IC 74139 we can therefore only have

2 combinations: 00 or 01. In the first case the integrated

will enable the O0 output, connected to the enable pin of

the ROM memory chip, while in the second the O1 output,

connected to the RAM. Figure 3 shows the RAM and ROM

chips (for convenience side by side) with their enabling

lines highlighted in red. Because the decoder emits a low

signal on the selected output and simultaneously a high

signal on the other, only one chip at a time will receive

the enable signal. At this point, the signals on the Z80's

"RD” (“read”) and "WR” (“write”) pins will be used to

indicate to the selected memory chip the operation the

CPU intends to perform. It goes without saying that for

the ROM (indeed, EEPROM), it will only be possible to

read: if you see, the relative “WR” pin is in fact connected

directly to the 5V, because it is only used during firmware

programming.

We just saw the address decoder in action for the Z80's

selection of RAM and ROM chips. As in this case, even

when communicating with peripheral units, those signals

come into play to select the different chips and others in

order to exchange data. Let's go back to our wiring diagram

for a moment and see the I/O decoder, a chip similar to

the one used to select the memories but a little more

complex. In fact, this chip has 3 inputs thanks to which

it can select up to 8 independent units (in fact, 2^3=8):

the IC is called 74HCT138. Why didn't they use the same

embedded memory? Because 4 outputs alone were not

enough for us, as the peripherals of the LM80C were well

5 (with the possibility in the future to increase further,

expanding the computer): we have a chip for parallel

communication, one for serial communication, a timer

used to generate clock and interrupt signals, and finally

the video and audio chips. Each of these embeds must

be uniquely selected, otherwise the computer will not work.

Figure 4 shows the connection diagram of the 74138.

Unlike the 74139, as previously seen, the 74138 has, in

addition to the aforementioned 3 input lines, as many as

3 selection lines of the integrated circuit itself. Thanks to

this big number of inputs we can use several 74138 and

activate only one when a certain combination of signals

occurs on their enabling inputs. Going back to the previous

article, where I analyzed the reasons that led me to opt

for the Zilog Z80 as the CPU of my computer, you will

remember that in his favour there was the management

of an I/O address space separate from the memory address

space. What's that supposed to mean? Let's briefly explain

this by comparing it to a well-known CPU that does not

have a separate I/O addressing space, the 6502 (and its

derivative chips). Those who owned a Commodore computer

will remember that to access the video or sound registers

they used PEEK and POKE made to specific memory

Figure 2: 74139 used as address decoder, to select
RAM and ROM

Figure 3: ROM and RAM memories with selection lines
highlighted

Page 50 of 65 RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3

HARDWARE

addresses: in this case it is said that the registers are

mapped in memory, indicating with this phrase the fact

that certain addresses are no longer associated with

memory cells but serve to exchange data with the peripheral

chips: the designers of the computer have built decoding

circuits similar to those shown in this article thanks to

which, when the CPU selects a particular combination of

signals on the address bus, the hardware of the machine

goes to select a specific chip. This sacrifices more or less

large portions of memory, as the affected address blocks

cannot be used more for memory access. A CPU that

instead manages 2 separate addressing spaces for memory

and I/O allows you to use all the memory addressing

space: the Zilog Z80 directs 64 KB, and in fact the LM80C

does not lose even one of these bytes, having direct access

to 65,536 individual memory cells. In addition, it provides

256 unique addresses for accessing as many I/O drives

(it can actually address 65,536, but I don't want to put

too much meat on fire, referring to the reading of the CPU

data sheet for the affected reader). The discriminant is

made by the 2 simple electrical signals already seen

previously: MREQ and IORQ. The first one we used to

activate the memory decoder, and we will also use it now,

in conjunction with the second one, to activate our 74138.

Why do we use both signals, if we only used the MREQ

signal to select 74139? Because, as mentioned, the 74138

has 3 integrated enable inputs, indicated in figure 4 with

the pins called E1/E2/E3. The combination that the 74138

recognizes on the "enable” pins is LOW/LOW/HIGH,

respectively for E1, E2 and E3: this means that in order

for the integrated to understand that we want to dialogue

with him, we must simultaneously ensure that the signals

with the aforementioned values reach the 3 feet indicated.

As can be seen from the diagram, on E1 and E3 the signals

of the IORQ and MREQ pins arrive, respectively, emitted

of the opposite value: IORQ is low and MREQ is high when

the CPU wants to access an I/O device, while IORQ is high

and MREQ is low when it wants to access memory.

Consequently, it is easy to understand from the value

they take on pins, that the 74138 is enabled when it

recognizes the levels of the first combination. Finally, the

third pin E2 is connected to pin A7 of the CPU address

bus. Why would you do that? A help comes from the

decoding table in the image: if you look at the combinations

shown, pin A7, which is the eighth pin of the address bus

and therefore carries the value of the highest bit of the

first byte that makes up the address, always assumes a

value of 0: this means that all devices whose address

ranges from $00 to $7F, in binary from 0000.0000 to

0111.1111, will be managed by this 74138. This serves

to simplify matters for us in the event that in the future

we want to expand the peripherals of the computer and

assign to another 74138 decoder the task of managing

these peripherals or if we assign to some of them an

address in the range $80- $FF, in binary 1000.0000 –

1111.1111: here you can see that the eighth bit, highlighted

in bold, always takes value 1 (unlike the previous case,

where it always takes value 0). Once the enabling pins

have been arranged, the input pins that select the outputs

of the integrated remain. Referring back to the table, we

connected the 3 lines A0/A1/A2 to the A4/A5/A6 lines

of the address bus, so that the incoming triplet selects

the correct chip: with 000 we select THE PIO (parallel

device), with 001 the CTC (timer), with 010 the SIO (serial

device), with 011 THE VDP (video chip) and with 100 the

PSG (sound chip). We chose the A4/A5/A6 lines of the

address bus simply because all the peripherals contain

multiple operating units or because they need one or

more signals to select the operating mode, reserving

these bits as real selectors. For example, the PIO has 2

ports on which you can operate in 2 different modes, and

the same is true for THE SIO; the CTC instead has 4

internal channels, while THE VDP and the PSG use an

additional pin to indicate to the chip whether the value

indicates the selection of a register or whether it should

be interpreted as data.

Well, in this article I have dealt with many topics that, I

hope, have been interesting and have helped you understand

how computers address the various internal components.

In the next article we will discuss in detail the use of some

peripheral chips.

Useful links

The LM80C project reference web page:

https://www.leonardomiliani.com/en/lm80c/

Electronic diagrams and firmware source code:

https://github.com/leomil72/LM80C

The Hackaday page dedicated to the LM80C:

https://hackaday.io/project/165246-lm80c-color-computer

Figure 4: 74138, used as an I/O decoder

https://www.leonardomiliani.com/en/lm80c/
https://github.com/leomil72/LM80C
https://hackaday.io/project/165246-lm80c-color-computer

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 51 of 65

GAME TESTING

Perfection is not being perfect, but

continually striving for it. - JOHANN

GOTTLIEB FICHTE

Gentlemen, we are close. Very close

to perfection in a video game and

everything inside a 1.44 Mb disc

(when the world was still simple,

right?, NdN).

In 1994 Ruff'n'Tumble on the Amiga

market, a market shaken by the failure

of Commodore, imposing itself as one

of the best securities of that period

and perhaps of all time.

Nowadays, the game not only confirms

the qualities it showed at the time,

but it will blur many that went

unnoticed at that time, but that

nowadays are worth dusting.

The game is developed on four worlds

(divided into four sections) and is a

platform game with a strong shooting

'em up vein, today it could be classified

between a Run n Gun and a

Metroidvania. Developed by the duo

known as Wunderkind (Robin Levy

and Jason Perkins) it immediately

attracts us for its technical realization

and transports us into a game with

furious but at the same time complex

and varied mechanics.

The protagonist is a chubby boy named

Ruff Rogers, who must collect a number

(indicated by appropriate counters

at the top of the screen) of red, green

and blue marbles to finish the levels.

Without these you cannot access the

next level. Meanwhile, blow up

everything in front of him!

The moment of "destruction" is

possible thanks to five different types

of weapons ranging from the simple

machine gun to the most powerful

laser, through the rocket launcher or

the devastating flamethrower. One of

the greatest innovations of the game

lies precisely in the management of

the arsenal: armament has infinite

ammunition but does not last forever.

A special bar decreases rapidly with

the passage of seconds independent

of the blows exploded. Once you reach

the end you return to the dignified

but not "enjoyable" classic shot. To

avoid the situation the only thing our

fat hero can do is collect the numerous

power ups present in the levels. It

may seem like a limitation but it

RUFF 'N' TUMBLE
Editor: Renegade

Developer: Wunderkind

Year: 1994

Genre: Platform/Shoot'em up

Platform: Amiga/CD32

Page 52 of 65 RETROMAGAZINE WORLDENGLISH YEAR 1 ISSUE 3

GAME TESTING

actually makes the action frantic and

the fun curve always at its best, allowing

you to explore the game in every possible

hurdle.

Also remarkable is the conformation

of the levels, the disposition and the

behavior of the enemies. Designed

specifically to force the player to face

the path in speed, but also allowing

them to explore maps (which are really

vast) and face pitfalls with a minimum

of tactics.

The intensity of action then becomes

buzzing, dispensing entertainment in

industrial quantities!

What about the difficulty curve?

Ruff'n'Tumble is strict but fair. Never

incorrect and always allows you to

continue offering, thanks to an excellent

control system, various ways to do so.

And the control system is the real must-

have on which the Wunderkind built

this jewel. Even with a single button

and despite the excessive inertia, the

care with which it was designed allows

us almost total control over Ruff, who

runs, jumps, swims, climbs and blasts

everything with precision and

naturalness; which is very rare in many

other similar products of those times

(and also in many modern games). The

result? Excellent gameplay, enhanced

by an impact soundtrack!

I will conclude by talking about graphic

creation. Clean, full of colors and light

effects (remarkable those of transition

between light and dark), always perfect

animations and an impressive attention

to detail. This was possible when

programmers were left to work

peacefully and passionately and this

was what they knew how to get out of

the Friend.

Ruff'n'Tumble, my lords, is the swan

song of Commodore Amiga. A

magnificent song that approaches

perfection and demonstrates how that

machine was able to go beyond the

mismanagement of its managers.

Masterpiece!

by Carlo N. Del Mar Pirazzini

» Gameplay 95%
Well designed and immense

levels, excellent control

system, strict but fair and

immediately playable.

» Longevity 85%
A great product that will keep

you busy for a very long time

and that proves that it was

possible in a 1.44 floppy disk.

You can't miss it now.

OUR FINAL SCORE

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 53 of 65

GAME TESTING

Between the late 80s and early 90s,

the SAW felt a strong pressure in front

of the Nintendo home playground.

Kyoto's most famous brands were

Super Mario and Legend of Zelda.

If Mario has to wait a little longer

(1991 with the arrival of Sonic), Sega

decides to develop a competitor of

the well-known Rpg Zelda on the 8-

Bit platform called Sega Master system.

Between 1989 and 1990, thanks to

the Golde Axe brand and its

enthusiastic leverage, he created this

Golde Axe Warrior.

In those years I went a little deaf,

bisected by the magazines of the

sector or almost, but I must admit

that it is a very good product.

If you are familiar with Zelda, Golden

Axe Warrior will feel like home. The

plot is classic, we will play in the role

of the hero, who came to destroy

Death Adder (historical enemy of the

Golden Axe saga) and to end his reign

of terror in the world of Firewood. In

short, the plot is similar to Zelda and

the millions of other adventure games.

To get to the bad guy on duty, we

need to collect nine crystals hidden

in nine different dungeons scattered

all over Firewood. A further advantage

to continue the game is the plethora

of hidden secrets, mini-games, cities

to explore, side quests to solve and

shops.

There are so many areas to explore

and locate and, literally, a secret in

every world that we will visit. In some

places we will be able to explore areas

using objects such as canoes,

miniboats or other that will allow us

to reach areas that are difficult to

reach without. This was missing from

the first Legend of Zelda, a huge world

to explore freely. Each world is well

characterized and specific and there

is also a beautiful full-bodied section

dedicated to magic. Like Zelda for

Nes, we can save game progress here.

I mean, it's a nice game, classic but

compelling.

Graphically it was light years compared

to Nintendo's rival. Very careful

graphics and well detailed. With

excellent use of Saw 8-bit paddles.

Very fluid and well animated. Also

beautiful is the rather epic opening

introduction. In short, a nice display

of the graphic capabilities of the Sega

Master System.

Very little sound, the music is not

negative in itself but in the long run

it is nerve-wracking and repetitive

and seemed unsuitable in some game

points. The Boss music is beautiful

and the sound effects in general are

excellent.

Graphics

Here's one of the areas where the

game really shines compared to Zelda,

it has just wonderful graphics. Some

of them are not very innovative (paddle

exchange bosses always bother me

and some may have used a few more

GOLDEN AXE
WARRIOR

Year: 1991

Editor: Sega

Developer: Sega

Genre: Action Rpg

Platform: Sega Master System

Page 54 of 65 RETROMAGAZINE WORLDENGLISH YEAR 1 ISSUE 3

GAME TESTING

details), but they are still wonderful.

Lots of colors and fluid movement, it's

well done. The opening story is decent,

but the title screen is a real showcase

of what SMS can do.

Sound and music

Here we find the game a little lacking.

One of Zelda's most memorable things

was the music, which fit perfectly.

Although the music in Golden Axe

Warrior is not necessarily negative, it

simply becomes a bit annoying and

repetitive and sometimes doesn't really

fit. The music of the dungeons could

have been more disturbing, even if the

music of the bosses is beautiful. The

sound effects, however, are good, much

better than what you'll find in Zelda.

The controls at the beginning are a

little wobbly, the character has a

tendency to move a little in the wrong

direction until you get used to it, but

it's not a big deal. Some enemies require

greater precision and putroppo the

collision is not the best and will affect

the gameplay as a whole. However the

very simple configuration and interface

with different elements are not bad. It

may have been a good idea to have two

separate slots, one for a weapon and

one for an instrument / magic, but

since you never really need to use two

at the same time, it doesn't change

much.

The degree of challenge of the game

will keep us busy for several hours and

will not bore us.

I have to admit, it's a good game! That's

very good. One of the few ARpgs by

SMS that I enjoyed playing to the end.

Although it is very similar to the Zelda

saga, it is very well done technically

and presents a good degree of challenge.

It does not improve the genre but lets

itself be played with pleasure. Too bad

Sega hasn't continued to develop this

Spin Off series on other consoles as

well because the charm of the Golden

Axe world is always remarkable. Try it

and play with it.

You will find the cartridge at

"scandalous" prices and my advice is

to try researching or uploading the

Roma on an everdrive or emulator.

There is no localization in Italian, but

it does not affect much.

by Carlo N. Del Mar Pirazzini

» Gameplay 70%
Controls not always perfect do

not help you take immediate

confidence with the game. Too

bad because the game system

and the double slot for

weapons and magic are not

bad at all.

» Longevity 90%
Many sidequests, many objects

to recover and secrets to

unveil all accompanied by

wonderful graphics will keep

you busy for quite a while.

OUR FINAL SCORE

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 55 of 65

GAME TESTING

Being a teen in the 80s not only meant

discovering increasingly innovative

computers and coin-ops day after

day, but also witnessing the birth of

real cornerstones and masterpieces

of cinema and music.

And maybe while we were copying

from MC Microcomputer the latest

list for our Vic20 or Commodore 64

while listening on the radio to You

Shook me All night long AC/DC on TV

they were going to transmit one of

the last science fiction films released

in the previous two/three years.

Obviously if we wanted to travel

through time we looked Back to the

Future but when we needed a bit of

healthy terror and adrenaline, the

choices were not lacking at all.

Alien's saga, which recently evolved

into Prometheus and Covenant,

managed to bring to our screens the

purest terror coming from space in

the form of imposing, treacherous

and lethal creatures designed by

Giger's genius, animated by our

Rambaldi with a nemesis, the young

Sigourney Weaver, determined and

sexy at the same time, able to

understand before the rest of the crew

that those beasts found on a remote

Earth star colony should never arrive

on earth.

And while technologies in the late

1980s went from 8 to 16 bits the

desire to relive that cinematic epic in

the form of a video game grew stronger

but only with the advent of the never

forgotten Amiga computer (made by

Commodore) an English programming

team managed to give to the

community of video players a game

able to recreate the tension seen in

film.

Team 17 for Amiga was synonymous

of quality and (often) also difficulty

but in the case of Alien Breed it was

clear that it could not be a walk to

escape from a Xenomorphi-infested

space base without losing a ton of lives.

The game didn't have the original

license, but what was there was enough

to recreate on our monitors the

adrenaline of hunting giant fucking

bugs with acid instead of blood.

The missions were quite simple: reach

the exit, reach the exit within a total

ALIEN BREED
Platform: Commodore Amiga

Genre: Action

Release date: 1991

Reviewed version: Alien Breed

Special Edition 92 – Amiga ECS

Page 56 of 65 RETROMAGAZINE WORLDENGLISH YEAR 1 ISSUE 3

GAME TESTING

number of seconds after destroying

some reactors but the labyrinthine

structure of the levels was not so easy

at all.

The corridors were often locked by

electronically activated doors, they

needed keys to be opened and scattered

across the levels there were never

enough. It was therefore necessary to

access some terminals located in specific

locations in order to access the central

computer of the base (or the never

forgotten Intex System) and using

recovered credits you could buy keys,

upgrades, new weapons, ammunition

and medikits essential to save our skin

from continuous and incessant alien

attacks.

The Alien Breed series received

numerous follow-ups: Alien Breed 2

The horror continues and Alien Breed

Tower Assault where the two-

dimensional graphic of the game was

brought to the uppermost level with

the help of the AGA chipset (mounted

on the latest Amiga models 1200 and

4000) plus two 3D chapters that tried

to push the Amiga architecture beyond

its limits (however requiring additional

expansion cards to be able to enjoy

everything in full screen with a decent

framerate).

Team 17 were the author of other

memorable titles such as the Worms

saga on Amiga,PC and Console, as well

as the Project X shooter, the Superfrog

platform and the Body Blows.

Recently, Team 17 tried to exhume the

brand from the past with new 3D

episodes on PC and Console without,

however, being as incisive as for the

first 2D chapters on Amiga.

Of the original Alien Breed there are

also remakes published on Playstation

4 and PS Vita although, personally, I

recommend paly the original saga in

Amiga emulation on PC with WinUae

to really understand what it felt like

back then, in the early 90s, when the

fucking aliens came out of the walls of

our bedrooms!

by Flavio Soldani

» Gameplay 92%
Finally a game where surviving

hordes of aliens can recreate

the tension of the cinematic

blockbuster. The first chapter

of an unofficial series able to

give the player playability and

satisfaction with a bit of

strategy that did not hurt.

» Longevity 96%
The game was not very long

but given the difficulty to get

to the end was no a piece of

cake. We recommend the

Special Edition 92 version that

made the game slightly easier.

If by longevity we also mean

durability I would say that

even after 30 years a healthy

game of Alien Breed in

emulated version is still

satisfying today!

OUR FINAL SCORE

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 57 of 65

GAME TESTING

After a long and sultry August

spent entirely in Milan, sweating

under a breathing mask and

looking for some titles of the past

that passed a little unnoticed

although very cool to play with, I

made my umpteenth discovery

thanks mainly to old Italian

newsstand cassettes of the 80s.

They often included small games

that were almost impossible to find

in their original version. Still they

deserved some attention given the

playability and entertainment they

gave us during the boring summer

and holiday afternoons and also

during evenings entirely dedicated

to our video game station.

This time it's the turn of a phone

techie, whose name is Frantic

Freddie! This is a game that

presents itself as the classic bi-

dimensional platform on several

levels with lots of stairs, in this

case telephone poles on which to

climb and descend to avoid

enemies and collect the essential

items to finish the level. You also

have to grab as many bonuses as

you can to increase your score.

That being said, this could only be

a simple game capable to

entertain you a dozen minutes, but

the difficulty is certainly not

lacking, so tha challenge becomes

more and more interesing as you

proceed! The stairs could not have

gone up or down both sides, plus

they could block the passage to go

further, putting us in a dead end

waiting only for death.

In short, to complete each level

you have to recover all the

sparkling pots scattered around

the level and avoid the monsters

called "Greeblies" that change

appearance in each level. When

you have successfully reached

higher levels of play, you will also

see nice detaches, very typical of

the platoforms in the 80s. They

sort of give that extra touch of

entertainment and reward our big

efforts.

The music soundtrack is very good

thanks to tunes from successful

and popular songs like Boogie

Fever, Don't Bring Me Down, etc.

Maybe I'm being repetitive, but the

C64 always offered the most

beautiful music in my opinion and I

sometimes wonder how they could

have gotten all those successful

songs and converted them into

eight bits!

For those of you, lovers and

experts of the platform genre, will

you definitely find some originality

in this game or perhaps it was

better to say limitations?

Well, like any game worthy of

respect, once you get used to its

gameplay, it will be pure fun! The

games almost impossible to finish

were counted on the fingers of one

hand and I won't list all the titles

here since you will surely have

noticed and played them so many

times.

My hope, on the other hand, is that

all of you had a good time on these

recent holidays surely a little

different from usual. Our attention

was no different in finding some

obscure and good games. So was

our passion for retrogaming that

kept us company not only during

the lockdown months, but also on

the sea beaches and mountain

chalets, etc.

Before saying goodbye I

recommend you to always tell

yourself when take on a new game:

"Nothing is impossible!"

by Daniele Brahimi

FRANTIC
FREDDIE

Year: 1983

Developer: Commercial Data

Systems

Platform: Commodore 64

Genre: Platform

» Gameplay 70%
Right level of difficulty and very

fun once you get used to it!

» Longevity 75%
Not so long to finish, but surely a

source of good company!

OUR FINAL SCORE

Page 58 of 65 RETROMAGAZINE WORLDENGLISH YEAR 1 ISSUE 3

GAME TESTING

Take control of Bobby the cop in a

nightmare landscape.

As the clouds roll threateningly

over your head, your goal is to

cross fifteen screens to reach the

booth of Punch and Judy, where

Judy was locked up by the bad guy

on duty, Mr. Punch.

Obviously, Mr. Punch has put

various obstacles in Bobby's way:

there are holes to climb over with

”perfect pixel” precision, flying

tomatoes and custard cakes,

magic carpets to ride and, of

course, Mr. Punch himself, who is

more than ready to stab you with

his sword to prevent you from

moving forward in your game path

and completing it.

I have played both the C64 and

C16 versions and, although the

C64 has more RAM and a better

audio/video compartment on its

side than its 'smaller brother', I

think that on the latter the

performance is better, the game is

nicer and more playable.

In C64 the choice of colours did

not seem right to me and

something is lost in terms of

gameplay.

In the C16 on the contrary the

graphic is pleasant, the colors are

not excessive and Bobby's

character is well drawn, although

sometimes you notice during the

game some chromatic defects

known as "color-clash", typical

also of Spectrum games.

The sound is functional and there

is a nice melody played as a

reward for reaching the end of

each screen.

The controls are simple and

respond smoothly and the

difficulty, continuing on the various

game screens, grows in the right

way.

Obviously, the more you get into

the game, the more difficult it is.

Sometimes play can be frustrating,

especially when jumps need to be

timed with extreme precision to

avoid flying debris, and exactly at

the right point on the screen.

There is also a time limit to

completing each screen, but the

game is still very playable, and

with a little practice it can be

completed. Although Bobby can

never rest - just as he manages to

save Judy, Mr. Punch arrives and

pushes her away again, and the

game returns to the beginning!

With its strengths and weaknesses,

I still consider it a good game, and

it is also one of the first I have

played in my "green years", so I

feel particularly attached to this

game also for this reason.

Greetings to all and... see you next

time!

by Marco Pistorio

PUNCHY
Year: 1983

Developer: Mr.Micro

Platform: Zx Spectrum,

Commodore 64, Commodore

16, Commodore VIC-20,

Amstrad CPC, MSX, Tatung

Einstein

Genre: Platform

» Gameplay 90%
Smooth play, with a well-

calibrated increasing degree of

difficulty. It is the ideal game for

those who have a good eye, fast

reflexes and the right amount of

patience.

» Longevity 70%
It is probably difficult to play it

many times, because the game

never ends but always starts

again from the beginning.

OUR FINAL SCORE

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 59 of 65

GAME TESTING

The group called Abyss in recent years

has given us a series of remake games

of great classics, all called Tiny.

A remarkable job that has always

been very successful among users.

In this hot “abnormal” summer they

released Tiny Bobble, a “perfect

arcade” conversion (as the developers

call it) for Amiga.

The original version released in the

80s, although pleasant and effective,

lacked similarity with the dining room

machine and was a port of the Atari

ST version, precisely why the Abyss

collective handed over the original

game code and pulled this version out.

Before the final version, they put on

the market (for free) several beta

versions that gave hope.

What have they changed or improved?

Here are some improvements from

the original game for Amiga:

- It only needs a single 178kb

"lowercase" file (the original needed

a full disk)

- 50 fps (instead of 25 fps)

- 32 colours (instead of 16)

- 150 power ups (instead of 40)

- Original screen height of 224 pixels

(was only 200 pixels)

- Almost all sprite animations (had

only about 20% animations)

- Progress screen (not available)

- Big Enemies animation every 16th

level (not available)

- Player Two Join animation (not

available)

- Big Score images (not available)

- Extended animated screen (not

animated)

- Animated Potion Screen (not

animated)

- Animated introduction (not animated)

- Animated Boss fight (it was a still

image)

- Multiple Finals (had only one ending)

All premises maintained.

Qualitatively it is a beautiful sight and

also from the audio point of view we

have a beautiful conversion and an

audio quality of all respect.

All encoding has been performed with

Amiga C/C + + Compile and can be

viewed on the developers' site.

But... And yes, there is a but...

It's not really perfect arcade.

It's very nice, very similar, well

developed but it's excessively easy.

Simplified.

Some power ups and bonuses are

absent or in incorrect positions (and

I know, I'm picky) and there are no

secret rooms (real resistance challenge

of the original game).

Too bad, because the development

is really almost perfect and totally

TINY BOBBLE
Year: 2020

Developer: Abyss

Genre: Platform

Platform: Amiga

Page 60 of 65 RETROMAGAZINE WORLDENGLISH YEAR 1 ISSUE 3

GAME TESTING

similar to the original.

The decision to release the final version

a week after the last beta is also critical.

I would have lost a few more weeks.

Caution is not a failure. He's always a

beautiful Bubble Bobble.

The game is available in ADF format

for all Amiga with at least 1 mb of ram,

it also runs perfectly emulated on

WinUAE and with the Cores on the

MysterFPGA.

by Carlo N. Del Mar Pirazzini

» Gameplay 90%
It is an almost perfect

experience.

Playable as the most classic

Bubble Bobble but in some

places not quite as "perfect"

as promised.

» Longevity 90%
It's still Bubble Bobble, but it's

much simpler and with many

gaps (LACK of the secret

rooms!! nbN).

OUR FINAL SCORE

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 61 of 65

GAME TESTING

My experience as a video player was

born in the arcades of the 80s and

early 90s. At my house, however, I

always preferred computers and so I

went from the legendary commodore

64 directly to my first PC 386. I

basically completely skipped the

console phase, especially the 16-bit

ones.

Thanks to computers I discovered the

phenomenon of emulation and this

allowed me, and still allows me today,

to play gems from the past.

Among these titles today I want to tell

you about my favorite, which

unfortunately did not have the

consideration that it fully deserved: I

am talking about Black Thorne Super

Nintendo version.

The title was developed by Blizzard for

Interplay in 1994 (PC and Mac) and

1995 (SNES and saw 32x ???) and this

already is a hell of an origin. But

beyond its noble origins, Black Thorne

sports an original gameplay that is

incredible to this very day.

Let's start with some history. In this

game we play in the shoes of Kyle, heir

to the throne of a kingdom that was

conquered by the wicked Sarlac who,

thanks to an army of orcs, reduced the

Androthi people to slavery. Starting

from the usurper's mines, we must

climb the various levels to the final

clash with Sarlac himself and bring

order back to the kingdom.

The game is a platform in perfect

Prince of Persia and Another World

style, with moves and dynamics that

also remind of the beautiful Flashback.

Our goal is to get past every screen by

moving through stairs, bridges,

platforms, jump holes and monsters to

kill.

Our hero is armed with a powerful

pump rifle that boosts beyond levels

and can also collect and inventory

grenades, keys, radio-controlled

bombs and healing potions.

In order to overcome each screen we

must always think carefully about the

right move to make and just so often

we will have to solve riddles or find

hidden passages.

During our journey we will encounter

orcs and monsters with whom we must

engage in deadly duels. We can also

interact with Androthi prisoners who

will give us important information or

give us objects to use in our

adventure.

Once arrived in the throne room, to

defeat the wicked Sarlac we must use

our best moves, namely jumps,

dodging and rolling, otherwise we will

never succeed on the monster.

Blach Thorne has beautiful graphics,

with detailed and colourful sprites.

Excellent is also the sound

compartment with music and effects

that help create the right atmosphere.

Black Thorne is definitely rough and

violent, as evidenced by the

continuous bloodshed or the

possibility of even shooting and killing

prisoners. Unfortunately, this

contributed to the criticism of this title

and also hampered the design of a

possible follow-up, which would have

been absolutely welcome.

Nonetheless, I really recommend you

to retrieve this masterpiece that you

will never find in the rankings of the

best games of the Super Nintendo, but

that nevertheless offers a truly unique

gaming

experience.

 by Querino Ialongo

BLACK THORNE
Publisher: Interplay

Year: 1995

Platform: Snes

Genre: Platform

» Gameplay 90%
Black Thorne takes the

playability of Prince of Persia

and Flashback to the highest

level. If you like the genre you

will still love it nowadays.

» Longevity 90%
Every jump, every movement,

every shot must be thought and

calculated. This makes the game

very long. In the end you will find

that you will need several hours

of play to finish it.

OUR FINAL SCORE

Page 62 of 65 RETROMAGAZINE WORLDENGLISH YEAR 1 ISSUE 3

GAME TESTING

If there's one thing computers and

consoles enthusiasts have learned,

it's that obsolescence sooner or

later comes. It could be in a year,

five or ten, but in the end a system

is inevitably left on the bench,

while other more powerful and

versatile machines take its place.

But what happens to those that

leave the market? Are they

destined to disappear into

memory, remembered only by a

group of nostalgic enthusiasts?

Not necessarily.

There are people who still believe

in the past and actively support it;

this is why “historic” consoles and

computers are enriched by new

annual releases, developed with

passion and dedication by true

romantic heroes.

One of the most interesting

examples, in this sense, is

Sturmwind, a horizontal scrolling

shooter created by the German

team Duranik.

Originally born on Atari Jaguar

back in 1997, under the temporary

title “Native”, the game was then

moved first to Nuon, one of the

darkest consoles ever, finally

finding a home on Dreamcast.

Released under the label Red Spot

Games in 2013, Sturmwind is a

demonstration of how skill and

stubbornness can overcome the

challenge of time.

After a choreographic introductory

full motion video, we are

introduced to the main menu,

through which we can enter the

live game. Sixteen truly action-

packed levels await us, divided into

seven worlds, with a hundred

different enemies waiting for us

and about twenty giant bosses to

face. Considering the average

lifespan of such a shooter, we are

at absolutely remarkable levels.

Let's start with the aesthetic

implant: graphically Sturmwind will

make your jaw drop to the ground.

The programmers squeezed the

Dreamcast like a lemon, and you

can see the result.

The graphics engine features

perfectly fused two-dimensional

and three-dimensional elements

together, interactive backdrops,

particle effects, reflections, fluid

simulation and tons of enemies

simultaneously on screen.

The levels are surprisingly varied,

both for settings and themes, and

are characterized by impeccable

fluidity, which remains constant

even when we meet the gigantic

bosses, beautifully animated.

Watching everything move on

screen makes a certain impression,

especially when our beloved

Dreamcast is attached via a VGA

cable to a CRT monitor.

The audio department also

defends itself very well, with a

soundtrack of excellent quality (as

expected from German

composers), always fitting and

integrated into the action. The

OBSCURITY CORNER
STURMWIND

Publisher: Duranik

Year: 2013

Platform: Dreamcast

Genre: Shoot'em up

RETROMAGAZINE WORLD-ENGLISH YEAR 1 - ISSUE 3 Page 63 of 65

GAME TESTING

effects are also well realized and

loud to the right point.

One of the most interesting aspects

of Sturmwind is that it was not

designed for an audience of just

sneakers (???). Even those who do

not have much experience in the

genre will be perfectly comfortable,

thanks to the possibility of choosing

the level of difficulty, as well as

being able to save progress on each

new chapter reached. In this way

the challenge is more accessible and

makes the game really for everyone.

All types of controllers are

supported, from standard pads to

arcade sticks, the VMU and even the

Rumble Pack (which is also

configurable).

In addition to the normal mode

there is also the arcade mode,

where we have to overcome six

levels without continuing, and a

whole series of extras such as

trophies (similar to those of modern

games), which open a section

dedicated to preparatory drawings,

sketches and models.

There is also the possibility to enter

your score on the official game site.

So, what do you say? Sturmwind is a

true act of love for Dreamcast, which

no sliding shooter (???) should

miss. If you are in the mood to

spend and want to look for the

limited edition, you will also find a

CD with the soundtrack and one of

the bosses (a giant octopus) in a

very cute soft toy version. For those

without the Sega home console, you

can still recover the latest EX

version, which is available on PC,

Xbox One and Switch.

Sturmwind is therefore an example

to follow and demonstrates once

again that our beloved machines

can continue to amaze us, despite

of the market logic and the

principle of obsolescence. The past

has passed, but it can always live

again: the important thing is not to

stop believing in it.

See you next time!

by Federico “Arzak1” Gori

» Gameplay 90%
Thanks to a remarkable variety

of environments and

situations, as well as a scalable

level of difficulty, the game is

very immediate and fun,

making it suitable for both

newcomers and fans of the

genre.

» Longevity 85%
The amount of levels, modes

and options, make the game

much more enduring than the

average of the genre, giving

you a complete and lasting

experience.

OUR FINAL SCORE

Page 64 of 65 RETROMAGAZINE WORLDENGLISH YEAR 1 ISSUE 3

GAME TESTING

The most beautiful game in the world?

Football? No, Sensitive Soccer!

Fifa 2020 and PES are only successors

to what is the absolute king of

computer and console football games.

Originally released on Amiga and later

ON ATARI ST and PC DOS, Sensible

Soccer changed the way we played

football on our gaming platforms.

It is perhaps the most converted and

imitated game of its kind and, although

it has a lot of years on its back, it has

a really impressive fan base.

Impressed enough to make him

immortal. Over the years it has been

continuously updated and finished,

played and replayed by all fans.

In this unfortunate 2020 the boys of

sensiblesoccer.de come out with this

“definitive” version.

Sensible World of Soccer 2020 is a

Windows application made by

disassembling version Two of the

Sensible World of Soccer 96/97 game.

Enlarged and expanded, updated with

all players in the current market.

Immense is the database of players

and eligible nations (2400 teams and

26,000 players).

What else they've added. Support for

state-of-the-art USB controllers, new

rescue system, multiplayer gaming

capabilities and even a free team and

player db upgrade system.

The game hasn't changed. It's always

that beautiful product you came out

in '94. Fast, dynamic and all based

on the player's “dynamic” ball control.

Playable and with eternal longevity,

especially in this version that is always

updated and updatable.

After all, the version is also available

for Amiga (A600 or A1200 with 4 MB

of FASTRAM, exotic but it can fit).

Look it up and download it (it's on

sale on GOG for just under 2 euros).

Football has never been so fun.

by Carlo N. Del Mar Pirazzini

SENSIBLE WORLD
OF SOCCER 2020

Year: 2020

Editor: FREEWARE –

SENSIBLESOCCER.DE

Developer: Sensible Software

(original version) – Many

more developers since then

Genre: Sports simulation

Platform: PC/AMIGA

» Gameplay 95%
Perfect controls and gradual

level of difficulty. Excellent AI of

the teams. Impressive updates

and the possibility to stay up to

date in the future.

» Longevity 100%
(Eternal!!!)
I cannot use numbers. Sensible

Soccer has gone beyond time

and history and has a really

incredible fanbase. Always

updated, always long-lived... so

ETERNAL.

OUR FINAL SCORE

RetroMagazine World as an aperiodic
magazine entirely ad-free is a non-profit
project and falls off any commercial circuit.

All the published material is produced by
the respective authors and published
thanks to their authorization.

RetroMagazine World is licensed under
the terms of:
Attribution-NonCommercial-ShareAlike
4.0 International (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/
by-nc-sa/4.0/

This is a human-readable summary of
(and not a substitute for) the license.

You are free to:
Share — copy and redistribute the
material in any medium or format
Adapt — remix, transform, and build
upon the material
The licensor cannot revoke these
freedoms as long as you follow the
license terms.

Under the following terms:
Attribution — You must give appropriate
credit, provide a link to the license, and
indicate if changes were made. You may
do so in any reasonable manner, but not
in any way that suggests the licensor
endorses you or your use.

NonCommercial — You may not use the
material for commercial purposes.

ShareAlike — If you remix, transform, or
build upon the material, you must
distribute your contributions under the
same license as the original.

No additional restrictions — You may
not apply legal terms or technological
measures that legally restrict others from
doing anything the license permits.

Disclaimer
Porting is the process of transposing, sometimes even with modifications, a

software component, aimed at allowing its use in a different execution environment

from the original one. Regarding the passage of code from a Basic language to

another, however, we usually don't use the term "porting" and we prefer

"conversion" or "adaptation", according to the Basic "dialect" used.

How many of us in the past have tried to adapt Basic code, specific to a computer,

so that it can be used on another one? Nowadays, since we have all the software

at hand, it is an almost lost practice, but in the past it was a real need. Think

back when you bought magazines and found listings in Basic for a number of

machines but you only owned one of them... how many programs, mostly games,

wasted. So why not try to adapt the code, created to run on another machine,

to our Basic implementation?

Those who have ever tried this process should have realised its difficulty. Far

from being as complex as a real porting, where the adaptation of the machine

code was mandatory, still Basic conversions are no joke at all.

Basic, unlike other programming languages, has seen a myriad of dialects

proliferate, sometimes configurable as real distinct languages.

Take a look at this list just to get a rough idea:

https://en.wikipedia.org/wiki/List_of_BASIC_dialects

And the list, however extensive, is far from being complete.

Try, for example, to think of all the Basic extensions that over the years have

been created to upgrade the Basic V2 of the Commodore 64; in this list you can

find only few of them...

All this long introduction just to tell you that I am personally working to transfer

some Basic listings created for specific platforms and 'take them' to others.

Why all this effort? What's the point?

First of all because it's fun and educational. Given the substantial differences

of the many dialects, it is sometimes necessary to rewrite the logic of the program

to make it work like the original. This way I will make sure I well understand the

code and above all that I am familiar with the target dialect.

Secondly because I like to give a second life to the code that would otherwise

end up forgotten.

And both reasons fit perfectly with the mission of our magazine.

In addition, this exercise lays the foundation for a RMW project that is still in the

pipeline, but that we plan to grow as soon as possible.

I also invite you to try this same exercise, especially if you are an early stage

programmer. I can tell you that an entire world will open up for you.

Do you want to know more? Keep following us, you won't regret it!

Francesco Fiorentini

The Basic that lived twice... Or even more!

RetroMagazine World
Year 1 - Issue 3 - OCTOBER 2020

Chief Editor
Francesco Fiorentini
Managing Director

David La Monaca
Editing Manager

Marco Pistorio
Web Manager

Giorgio Balestrieri

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.it

	10 REM **********************************
	10 REM **********************************
	-- Listato: mg-2d functions
	-- Listato: mg-2d functions
	-- Listato: mg-2d functions
	References
	BIBLIOGRAPHY
	BIBLIOGRAPHY
	Using the examples
	BIBLIOGRAPHY

