

Contents

Section 01 Welcome to AMOS Professional
« Chapter 01.01 Welcome
o 01.1.01 How to exploit this User Guide

o 01.1.02 A few words of welcome
o 01.1.05 A potted history of AMOS

Section 02 Installing
« Chapter 02.01 Installing AMOS Professional
o 02.1.01 AMOS Professional Installation Procedure
o 02.1.03 Hard Disc Users

Section 03 Getting Started
o Chapter 03.01 Getting Started
o 03.1.01 Absolute Beginners
o 03.1.02 The Edit Screen
03.1.03 Typing in the Edit Window
03.1.03 Your first programs
03.1.04 Direct Mode
03.1.05 Loading a program

[e]

o o o

Section 04 the Editor
o Chapter 04.01 the Editor
o 04.1.01 The AMOS Professional Editor
= 04.1.02 The Edit Screen
04.1.02 The Edit Icons
04.1.04 The Editor Window
04.1.04 The Information Line
04.1.05 The Scroll Bar
04.1.05 Direct Mode
04.1.08 The File Selector
04.1.10 Saving and loading a program
04.1.11 Auto-save and Autoresume
The AMOS Professional editor menus
= 04.1.12 AMOS
= 04.1.13 Project
= 04.1.15 Editor
» 04.1.17 Macros
= 04.1.21 Block
= 04.1.22 Search
= 04.1.23 Config
= 04.1.27 User
= 04.1.28 Help
« Chapter 04.02 Help
o 04.2.01 Calling for Help
o 04.2.01 The Help Window
o 04.2.02 Summoning help directly

o o o o o

Contents

o 04.2.03 Additional help

Section 05 the Basics of AMOS Professional
o Chapter 5.01 the Bare Bones

o)

o)

o O o o o o o

o)

05.1.01 Strings
05.1.01 variables
= (05.1.02 Naming variables
= (05.1.03 Types of variables
= (5.1 03 Storing variables
05.1.04 Arrays
05.1.05 Constants
05.1.05 Functions
05.1.06 Parameters
05.1.07 Procedures
05.1.07 Controlling a program skeleton
05.1.09 Separating commands in a line
05.1.10 Marking the bones of a program

« Chapter 5.02 String functions

o
o
o
o
o

o)

05.2.01 Reading characters in a string
05.2.02 Finding characters in a string
05.2.03 Converting strings

05.2.04 Manipulating strings

05.2.05 Getting infomation about strings
05.2.05 Array operations

o Chapter 5.03 Maths

o
o
o
o
o
o
o

o)

o)

05.3.01 Arithmetical calculations
05.3.01 Calculation priorities
05.3.02 Fast calculations
05.3.03 Relative values
05.3.04 Values and signs
05.3.04 Floating point numbers
= 05.3.05 Single and double precision
05.3.06 Standard mathematical functions
05.3.07 Trigonometry
05.3.10 Random numbers

« Chapter 5.04 Control Structures

o)

[e]

o)

[e]

[e]

05.4.03 Decision making
05.4.04 Structured tests
05.4.06 Using loops
= 05.4.08 Conditional loops
= 05.4.09 Controlled loops
05.4.10 Forced jumps
05.4.12 Handling data

il

Contents

« Chapter 5.05 Procedures

o
o
o
o
o
o

o)

05.5.01 Creating a procedure

05.5.01 Keeping track of procedures
05.5.02 Opening and closing procedures
05.5.03 Jumping in and out of a procedure
05.5.04 Local and global variables

05.5.07 Returning values from a procedure
05.5.08 Local data statements

« Chapter 5.06 Text

o)

o o o O o o o o o

o)

05.6.01 Printing on the screen
05.6.02 Setting text options
05.6.03 Changing text options
05.6.03 Setting text styles
05.6.04 Changing the text mode
05.6.05 Positioning the text cursor
05.6.09 Tracking the text cursor
05.6.10 Changing the text cursor
05.6.11 Advanced text commands
05.6.12 Advanced printing
05.6.14 Sending text to a printer

« Chapter 5.07 Windows

o)

o)

o)

o)

05.7.01 Creating windows
05.7.03 Manipulating windows
05.7.05 Creating slider bars
05.7.06 Displaying a text window

« Chapter 5.08 The Joystick and Mouse

o)

o)

o)

05.8.01 Joysticks
05.8.02 The mouse pointer
= (05.8.04 Reading the status of the mouse
= 05.8.06 Limiting the mouse pointer
= 05.8.06 Finding the mouse pointer
05.8.07 Displaying menus with the mouse pointer

« Chapter 5.09 Memory banks

o)

o o o O o o o o o

05.9.01 Memory bank numbers, names and types
05.9.02 Reserving a bank

05.9.03 Saving memory banks

05.9.04 Loading memory banks

05.9.05 Saving and loading memory blocks

05.9.06 Deleting memory banks

05.9.07 Swapping banks

05.9.08 Listing banks on the screen

05.9.08 Memory bank functions

05.9.09 Grabbing accessory program memory banks

il

Contents

o 05.9.10 Automatic bank grabbing
o 05.9.11 Creating your own utilities

Section 06 Screen Control
o Chapter 6.01 Setting up Screens

o)

[e] o O o o o O o o o o

o)

06.1.01 The AMOS Professional screens
06.1.01 Defining a screen

06.1.03 Controlling screens

06.1.04 Moving a screen

06.1.06 Manipulating screens

06.1.07 Clearing, hiding and showing screens
06.1.08 Screen priority

06.1.09 Defining screen colours

06.1.10 Screen functions

06.1.11 IFF screens

06.1.12 Extra Half Bright mode

06.1.12 Hold And Modify mode

06.1.13 Interlaced screens

« Chapter 6.02 Using Screens

o)

o O o o

[e]

06.2.01 Copying screens

06.2.02 Scrolling the screen

06.2.03 Enlarging and reducing the screen
06.2.03 Physical and logical screens
06.2.04 Screen synchronisation

06.2.05 Screen compaction

« Chapter 6.03 Screen Effects

o)

o)

o)

06.3.02 Flashing colours
06.3.04 Rainbow effects
06.3.06 The copper list

« Chapter 6.04 Graphics

o)

o o o o O o o [e]

o)

06.4.01 Graphic coordinates
06.4.01 Setting the graphics cursor
06.4.02 Drawing lines

06.4.03 Drawing outline shapes
06.4.04 Selecting colours

06.4.06 Setting several colours
06.4.07 Filled shapes

06.4.08 Alternative fill style
06.4.10 Overwrite styles

06.4.11 Advanced techniques

« Chapter 6.05 Menus

o)

o)

06.5.01 Using AMOS Professional menus
06.5.02 Reading a simple menu

v

Contents

o o o o O o o [e]

06.5.03 Creating advanced menus
06.5.05 The Menu control commands
06.5.07 Alternative menu styles

06.5.09 Moving menu displays

06.5.11 Moving a menu within a program
06.5.11 Keyboard shortcuts

06.5.13 Embedded menu commands
06.5.17 Automatic re-drawing of menus

Section 07 Object Control
« Chapter 7.01 Hardware sprites

o)

o o o o O o o

o)

07.1.01 Normal hardware Sprites

07.1.01 AMOS Professional computed Sprites
07.1.03 Hardware Sprites versus computed Sprites
07.1.04 The Sprite command

07.1.06 The Sprite Palette

07.1.08 Sprite Commands

07.1.09 Conversion Functions

07.1.10 The Hot Spot

07.1.11 The Sprite Doctor

« Chapter 7.02 Blitter Objects

o)

o O o o o o

o)

07.2.01 Displaying a Bob
07.2.03 General Bob Commands
07.2.04 Unmasking Bobs
07.2.05 Bob Priority

07.2.06 Bobs and screens
07.2.09 Bob Bank Commands
07.2.10 Flipping Bob Images
07.2.12 The Bob Doctor

« Chapter 7.03 Updating Objects

o
o
o
o
o

o)

07.3.01 Moving multiple objects

07.3.02 Displaying objects over a changing background
07.3.02 The update process

07.3.03 The updating commands

07.3.06 The Autoback command

07.3.07 Bob drawing modes

« Chapter 7.04 Detecting Collisions

[e]

o o o o

07.4.01 Collision detection options
07.4.01 Types of collisions

07.4.02 Masks

07.4.03 The collision functions

07.4.06 Collisions with rectangular blocks

Contents

o Chapter 7.05 IFF Animation

o
o
o
o
o
o

o)

07.5.01 Optimising IFF animation
07.5.02 An overview of IFF animation
07.5.02 Creating an IFF animation
07.5.03 Playing an IFF animation
07.5.03 Direct IFF animation

07.5.07 IFF Masking

07.5.07 Freezing the display

o Chapter 7.06 AMAL

o)

o)

o)

o)

o)

o)

07.6.01 The AMOS Animation Language (AMAL)
07.6.01 How AMAL is used
07.6.02 The AMAL guided tour

= (07.6.02 Moving an Object

= 07.6.03 Animating an Object

= 07.6.03 Moving within AMAL programs

= 07.6.04 AMAL registers

= (07.6.05 Logical decisions

= 07.6.07 Generating movement patterns

= 07.6.07 Playing a complex movement path

= 07.6.08 AMAL function list

= 07.6.11 Calling an AMAL program from AMOS Professional

= (07.6.12 Controlling update timings

= (07.6.12 Assigning Objects to Channels

= 07.6.13 Animating more than 16 Objects

= (7.6.13 Manipulating screens

= (07.6.15 The Autotest system

= 07.6.17 AMAL program control from AMOS Professional
07.6.20 AMAL errors

= (07.6.20 AMAL error messages
07.6.21 Compeatibility with STOS animation commands
07.6.25 the AMAL editor

« Chapter 7.07 Icons and blocks

o)

o)

o)

07.7.01 Background screen graphics
07.7.03 Screen blocks
07.7.04 Compacted blocks

Section 08 Audio
« Chapter 8.01 Music

o)

o o o O o o

08.1.01 Ready-made sound effects
08.1.02 Musical pitch

08.1.02 Channels and voices
08.1.04 Playing notes

08.1.04 Making waves

08.1.08 Making audio envelopes
08.1.09 Playing music

Vi

Contents

« Chapter 8.02 Samples

o)

o)

o)

o)

08.2.01 Playing a sound sample
08.2.03 Changing a sample bank
08.2.03 Playing a sample from memory
08.2.04 Double buffered sampling

« Chapter 8.03 Playing Music Modules

o)

o)

o)

08.3.01 Playing AMOS Professional music
08.3.02 Playing Tracker modules
08.3.03 Playing Med modules

Section 09 AMOS Interface
« Chapter 9.01 AMOS Interface

o)

o)

o)

o)

o O o o o o

o)

09.1.01 Introducing the Interface
09.1.01 The need for the AMOS Professional Interface
09.1.02 Introducing the AMOS Professional Interface
09.1.03 Variables and numbers
= (09.1.03 Setting a variable
= 09.1.04 Expressions
09.1.06 Resources
09.1.06 Calling an AMOS Professional Interface program
09.1.07 Creating a simple requester
09.1.07 Saving the background graphics
09.1.08 Waiting for an event
09.1.09 Interface buttons
= 09.1.11 Drawing a button
= 09.1.12 Changing a button
09.1.14 Keyboard short-cuts

o Chapter 9.02 Interface language

o)

[e]

o o o

[e]

09.2.01 The graphics functions
09.2.02 The graphics commands
= 09.2.02 Boxes and bars

= 09.2.04 Lines and Outlines
= (09.2.04 Displaying text
09.2.06 Labels and Tests
09.2.07 Interface conditional tests
09.2.08 User-defined functions
09.2.10 Machine code extensions

« Chapter 9.03 Advanced Control Panels

o)

[e]

o O o o

09.3.01 Dialogue channels
09.3.03 Testing an active zone
09.3.04 Accessing a variable array
09.3.05 Advanced Control Panels
09.3.05 Editing zones

09.3.07 Sliders and Selectors

vii

Contents

o 09.3.09 Reading arrays
o 09.3.10 Displaying items on the screen
o 09.3.12 Creating a selector

= 09.3.14 Controlling a selector from the main program

o 09.3.15 HyperText

= 09.3.16 Creating some HyperText
« Chapter 9.04 Interface Resources

o 09.4.03 The Resource commands

Section 10 Input/Output
o Chapter 10.01 Using the Keyboard

o)

o)

o)

o)

10.1.01 Checking for a key-press
10.1.04 Keyboard inputs

10.1.05 Keyboard Macros

10.1.06 Improving your typing skills

« Chapter 10.02 Disc Access

o)

o O o o o O o o o o o

o)

10.2.01 Disc drive names

10.2.01 Volume names

10.2.01 Files and directories

10.2.06 Checking for the existence of a file
10.2.07 Selecting a file

10.2.08 Naming files

10.2.08 Running programs from a disc
10.2.10 Disc space

10.2.10 Disc files

10.2.11 Sequential files

10.2.14 Random access files

10.2.16 Included files

10.2.17 IBM and ST users

« Chapter 10.03 Accessing a Printer

o)

o)

o)

o)

o)

10.3.01 The printer device
10.3.02 Embedded commands
10.3.03 Screen dumps

10.3.05 Other printer commands
10.3.06 Other ports and devices

« Chapter 10.04 Accessing a Serial Port

o)

o)

o)

o)

10.4.01 Opening the serial port

10.4.02 Setting the serial parameters

10.4.03 Sending and receiving Serial information
10.4.04 Other serial commands

o Chapter 10.05 The Parallel Port

viii

Contents

Chapter 10.06 AREXX
o 10.6.01 Using AREXX
o 10.6.02 AREXX-Compatible instructions

Section 11 Amiga Dos
Chapter 11.01 Fonts
o 11.1.01 Text Fonts
o 11.1.01 Graphic Text Fonts
11.1.01 ROM Fonts
11.1.03 Wiping fonts from memory
11.1.04 Assigning fonts
11.1.04 Converting font coordinates
o 11.1.05 The AMOS Professional Text Font Editor
Chapter 11.02 Speech
o 11.2.01 Synthetic Speech
o 11.2.03 The narrator Mouth
Chapter 11.03 Floating Point Numbers
o 11.3.01 Floating point libraries
Chapter 11.04 Multi-tasking
o 11.4.02 Communication between programs
Chapter 11.05 Libraries and Devices
o 11.5.01 Accessing the system libraries
o 11.5.03 Equates and Offsets
o 11.5.05 Adding equates to the equates file
o 11.5.06 The Requester extension
o 11.5.06 Control of devices

o
o
o
o

Section 12 Debugging
Chapter 12.01 the Monitor

o 12.1.01 Calling the Monitor
12.1.01 Using the monitor
12.1.03 The graphic output window
12.1.03 The Program Listing Window
12.1.03 The Information Window
12.1.03 Changing the window displays
12.1.04 The control keypad

o 12.1.05 Evaluating expressions
Chapter 12.02 Error handling

o 12.2.01 Trapping errors
Chapter 12.03 AMOS Errors

o 12.3.01 Editing error messages

o O o o o o

1X

Contents

[e]

[e]

12.3.06 Program errors
12.3.09 Run-time errors

Section 13 Accessories

o)

o)

o)

o)

o)

o)

[e] o O o o o O o o

o)

Chapter 13.01 Configuration

13.1.01 Defining a new accessory

13.1.02 AMOS Professional Configuration Files
13.1.02 Setting the Editor configuration

13.1.04 Setting the Interpreter Configuration
13.1.06 Saving memory

Chapter 13.02 Object editor

13.2.01 Loading the Object Editor
13.2.02 The Main Menu Screen
13.2.04 Disc Operations

13.2.06 Bank Operations

13.2.07 The Grabber

13.2.08 The Hot Spot

13.2.09 Palette Colours

13.2.10 Screen Resolution

13.2.11 Animation

13.2.12 The Object Editor Drawing Tools
13.2.15 Memory alerts

o Chapter 13.03 the Menu Editor

o)

o o o O o o o O o o

o)

13.3.01 Loading the Menu Editor accessory
13.3.01 The Main Menu
13.3.02 The Main Edit Screen
13.3.03 The Editor Menu
13.3.03 Item Status

13.3.03 Tree Editor

13.3.04 Draw menu

13.3.05 Item Drawing Screen
13.3.05 Draw functions
13.3.06 Settings

13.3.07 Object

13.3.07 Misc

« Chapter 13.04 Disc Manager

o)

o o o o o o

13.4.01 Calling Disc Manager
13.4.02 Entering a path name
13.4.02 Selecting files

13.4.03 Copying files

13.4.04 Examining files
13.4.05 Formatting discs
13.4.05 Copying discs

Contents

« Chapter 13.05 the AMAL Editor

o)

o)

o)

13.5.01 The AMAL String Editor Screen
13.5.02 The AMAL Editor Menus
= 13.5.02 AMOS menu
= 13.5.02 Edit menu
= 13.5.04 Recording and playing movement patterns
= 13.5.04 The Disc Menu
= 13.5.05 The Option Menu
= 13.5.05 The Block Menu
13.5.05 The Environment Generator

« Chapter 13.06 the Sample Bank Maker

o
o
o
o
o

o)

13.6.01 The Sample Bank Maker screen
13.6.01 The Current Sample window
13.6.02 The Sample Bank Window
13.6.02 Transfer buttons

13.6.02 The Information Line

13.6.02 The Control Panel

o Chapter 13.07 the Resource Creator

o)

o
o
o
o

13.7.01 The Resource Creator Main Menu
13.7.02 Editing Graphic Elements

13.7.03 Creating an Object

13.7.05 Editing text strings

13.7.06 Automatic Bank grabbing

Section 14 Appendix
« Appendix 14.A: Machine Code

o)

o
o
o
o
o

o)

14.A.01 Converting numbers
14.A.03 Manipulating memory
14.A.06 Direct access to variables
14.A.09 Manipulating bits
14.A.11 Using assembly language
14.A.11 Machine code procedures
= 14.A.12 Creating a machine code language procedure
= 14.A.12 Communicating with a machine code procedure
14.A.13 Calling machine code from an address or bank

« Appendix 14.B: AMOS Professional Run Time

o)

14.B.01 Run-only discs

« Appendix 14.C: NTSC vs PAL

o)

o
o
o
o

14.C.01 International television standard systems
14.C.01 PAL versus NTSC

14.C.01 The display size

14.C.02 Screen updating and running speeds
14.C.03 Restricting programs to a single mode

X1

Contents

o 14.C.03 Dual mode programs
o 14.C.04 International television standard systems

o
o

o)

o
o
o
o

o)

Appendix 14.D: Extensions
Appendix 14.E: Memory bank structures

14.E.01 General Information
14.E.02 Memory bank headers
14.E.04 WORK BANKS and DATA BANKS
» 14.E.04 Work Banks and Data Banks stored in memory
= 14.E.05 Work Banks and Data Banks stored on disc
14.E.05 Saving Several Banks at once
14.E.05 Format of Object Banks and Icon Banks
= 14.E.05 Object Banks and Icon Banks stored in memory
= 14.E.07 Object Banks and Icon Banks stored on disc
14.E.08 MUSIC BANKS
= 14.E.08 Music Banks stored in memory
» 14.E.11 The Patterns
= 14.E.13 Music Banks stored on disc
14.E.13 SAMPLE BANKS
14.E.13 AMAL BANKS
14.E.14 The AMAL programs
14.E.15 THE RESOURCE BANK
14.E.16 COMPRESSED PICTURES (PIC.PAC)

« Appendix 14.F: Copper lists

o)

o)

o)

o)

14.F.01 The Amiga co-processor
14.F.01 The Copper List

14.F.01 Accessing the Copper
14.F.02 Recommended Procedures

« Appendix 14.G: Command Index

xii

Welcome

AMOS Professional

Welcome to AMOS Professional, the dedicated creation system for producing professional Amiga programs. With
this system at your fingertips, you can exploit the full potential of your computer, and release the full creativity of
your own imagination. There is not a single style of best-selling computer game that cannot be produced with
AMOS Professional, and by reading through this User Guide and examining the hundreds of ready-made examples
on disc, you will soon discover that all of the hard work has been done for you.

AMOS Professional has evolved over several years until it can now provide beginners and experts alike with full
control over superb graphics, animation, audio sampling, synthetic speech, menus, interactive control panels, and
above all, ideas! Most importantly, you can customise AMOS Professional to suit all your own needs, quickly,
simply and precisely.

If you get into any sort of trouble, AMOS Professional offers instant on-screen Help with every command and
aspect of your programming, and there is even a built-in Program Monitor to examine what is happening within
your routines.

Experienced AMOS users will be amazed how many new features and improvements have been added to the
original system. Beginners will probably take it all for granted!

How to exploit this User Guide

A system that has been designed to satisfy all Amiga programming needs must offer its facilities clearly and simply,
otherwise the sheer scale of the package can seem overwhelming, and some of the system's wonders may be
completely overlooked by the user. To make this User Guide as helpful as possible, it has been divided into a series
of self-contained Sections, and each Section deals with a specific aspect of the AMOS Professional system. Where
these Sections cover several related subjects, each subject is examined in its own Chapter.

The number of the current Section and Chapter appears at the top corner of each page, with the page number printed
at the bottom corner. For example, this is page one of Section 1, Chapter 1, so if it appeared in the Index, it would
be referred to as 1.1.01, whereas the first page of Chapter 8§ in Section 5 would be referred to as 5.8.01.

However, the printed word can never convey the look and feel of a programming technique, which is why
everything that you read in these pages can also be demonstrated and analysed on screen, at the touch of a button!
AMOS Professional comes complete with pre-programmed instant examples of everything from a single command
to complete arcade games, strategy simulations and practical utilities!

Normally, you will be able to call for ready-made demonstrations and Help directly, but where it is necessary to
load a particular demonstration program from a disc, a special pointer symbol is used in this User Guide. Similar
pointers also appear to make it clear which examples you can type in.

01.01.01

Welcome

There are four different pointers that can appear at the left-hand side of the page, and they have the following
meanings:

DP> Disc Pointer. Please load this ready-made demonstration program from disc.

E > Edit Pointer. This printed example can be typed in exactly as it appears on the page, from the AMOS
Professional Edit Screen. It can then be Run, and is seen on screen.

D> Direct Mode Pointer. This printed example can be typed in exactly as it appears on
the page, from the AMOS Professional Direct Mode Window. It can then be demonstrated by pressing the [Return]
key.

X> This printed example demonstrates a particular programming technique or part of a routine. There is no need to
type it in, because it cannot be demonstrated in isolation on the screen.

Printed examples of AMOS Professional programs appear in special type, and they are indented on the page like
this:

E>AMOS=1
Print AMOS

AMOS Professional provides over seven hundred command words ready to be exploited in your own programming
routines, and many of them are staggeringly powerful. Because these command words are so important, they are
printed in prominent type throughout this User Guide. When they appear in the main body of the text, they are
printed in capital letters. For example the simple command word for printing items appears as PRINT. Where a
command word is introduced for the first time in the User Guide, it is indented on the page and printed in large bold
type, along with a summary of its use. For example:

PRINT
instruction: print items on screen
Print items

Everything else is fully explained as it is introduced, or is completely self-explanatory. Now that AMOS
Professional has been introduced to you, and before introducing AMOS Professional to your Amiga, here are a few
words of welcome from some of the key players in the team.

A few words of welcome

Welcome to AMOS Professional! Many thanks for buying it and many more thanks for helping us create it. Since
your feedback from the very first versions of AMOS, we have had one constant policy of listening to you, the user.
We have read every letter, and recorded all your comments, suggestions, bouquets and custard pies! Everything has
been evaluated and taken into account, and the result is in your hands right now.

01.01.02

Welcome

So much has been added to the original software, and special attention has been paid to the interface between our
software and your brain: the Editor.

I really want you to be comfortable within AMOS Professional, and I am happy to tell you that the Editor can be
reconfigured to exactly how you like it, and I mean exactly. You can even reprogram my menu options.

We'll keep on listening to your suggestions, so please fill in the Registration Card and when you have taken a little
time to discover the insides of AMOS Professional, tell us your impressions of the product. Old AMOS users, you
are in for a big shock! New users, I want you to be surprised, delighted and made passionate by my software!

FRANCOIS LIONET

Is it really five years since two French guys visited our offices with STOS Basic in tow? It had sold a couple of
thousand units in France and all its support programs looked terrible! But there was something magical under the
hood: STOS had an amazingly fast sprite engine, a powerful music facility, and it was perfect for writing games.
We got incredibly excited, decided to publish STOS in the UK as The Games Creator, and got the author to write a
Low res sprite editor and a game, for which we supplied all the graphics. STOS was transformed! It was launched in
August 1988 and stormed straight to Number One in the Gallup Charts. It has since sold 40,000 copies through the
shops, and a further 90,000 when Atari bundled it with the ST for a year.

AMOS was started soon after the STOS launch. Until then, Francois had hardly seen an Amiga, and boy, did he
have problems coming to terms with its idiosyncrasies! Since then, AMOS has transformed the lives of hundreds of
thousands of Amiga programmers! Easy AMOS followed on, to meet the demands of first-time programmers.
Frangois made so many improvements to the original environment that we had to give AMOS a complete overhaul,
and the result is AMOS Professional: what must be the most sophisticated development system for the Amiga yet. |
am sure that as you use AMOS Pro you will appreciate the sheer amount of hard work and love that Francois,
Richard, Mel, Stephen, Ronnie and the team have put into the package. They have worked long hours, seven days a
week to bring you their pride and joy, based on conversations and questionnaires from very many AMOS users. |
hope that this is exactly what you've been waiting for, and I wish you many happy hours using AMOS Pro to
transform your dreams into reality.

CHRIS PAYNE

I've been involved with AMOS from the very beginning. It's been a wonderful program to work with and I have
always been excited by each new version created by Francois. With AMOS Professional we have turned the tables
on you, the user. Instead of dictating what this new version was to be, we contacted over two hundred AMOS
enthusiasts to see what they wanted. From their replies we created a Wish List of major features. The ones that made
the most sense and offered the greatest benefits to the majority of users were grafted into the system. AMOS is a
very wholesome product, and it leaves no boulders unturned. Its creative powers allow you to produce endless types
of programs. Have strength in all your programming efforts, and if your human machine tries to defeat you and you
feel like giving up, rely on the strength of AMOS Professional. The satisfaction is well worth the effort. Go for it!

RICHARD VANNER

01.01.03

Welcome

I remember my first glimpse of AMOS Basic, three years ago. A package popped through my letter box containing a
three-and-a-half-inch disc bearing the label AMOS-1 written in biro. Ten minutes later I was completely hooked!
All through the next year, new versions arrived on my welcome mat, and I never quite knew what to expect. It was
like opening Christmas presents every week! There were many surprises along the way, including the AMAL
animation language, but the potential of the system was obvious from that first disc. As the project drew to a close, |
resolved to get down to some serious AMOS programming. Three years and several hundred programs later, I'm
still raring to go!

It looks like Christmas has arrived early this year, and I'm even more enthusiastic about AMOS Professional. It
heralds an exciting new chapter in the world of Amiga programming, and I'm delighted to be part of it. There are
dozens of great new features, and I have already programmed each and every one of them. AMOS has provided me
with years of enjoyment, and AMOS Professional promises more to come. So join me on an extended journey into
the fascinating world of AMOS Programming. you won't regret it!

STEPHEN HILL

When I first became interested in computers, they were an unknown quantity. Friends would ask me, "What can you
do with a computer?", and there I was for six hours a night with my ZX80, 1k RAM, no colour, no sound, no
graphics, writing 101 different programs that printed my name to the screen. At the time I didn't have an answer to
their questions. About twenty years have passed since I plugged in my first transformer, and home computers have
evolved into powerful and complex beasts. AMOS Professional is the tamer of my beast, and with a little effort on
your part, I'm sure it will become one of your best friends as well. Since using the AMOS system, I have the perfect
answer to the old question "What can you do with a computer?" I simply reply, "Anything I like!"

RONNIE SIMPSON

I was a computing crustacean: a creature with an interesting past and possibly extinct. I evolved from the digital
slime when computers were as big as a whale and as daft as plankton. Two years ago They said to me "This is an
Amiga, and this is Easy AMOS. If someone like you can understand how the two go together, then anyone can!" |
understood. I evolved. There were only three things wrong with Easy AMOS: it was sleeker, smarter and friendlier
than its big brother AMOS. So now They have come up with AMOS Professional. I can understand this too. I have
evolved some more.

Now I'm a computing dolphin: streamlined, intelligent, well-loved and a protected species. Thanks everyone.

MEL CROUCHER

01.01.04

Welcome

A potted history of AMOS
We end this Welcome, with a brief summary of the evolution of AMOS Professional.

« Christmas 1986: the first lines of STOS are written for the Atari-ST.
« November 1987: STOS is launched in France, with staggering sales of four dozen copies.

« Spring 1988: Mandarin Software agree to publish STOS in England, provided that one or two improvements
are made.

o Autumn 1988: STOS launch is greeted with acclaim, success and the recognition that an Amiga version may
be of some interest.

« February 1989: launch of the STOS Compiler.

« April 1989: AMOS programming commences, and comes to a temporary halt on 19th March 1990, when
Francois Lionet is conscripted into the French army. Programming is completed in uniform, in secret and
under stress.

« June 12th 1990: launch of AMOS V1.1.

« August 1990: manual and extras disc are added.

« September 1990: after feedback from users, AMOS V1.21 is launched. Updates are put into the Public
Domain, making them free to the already loyal band of AMOS users. Programming begins on the AMOS

Compiler.

e March 1991: Monsieur Lionet's military service comes to an end, and the French version of AMOS is
launched to celebrate this event.

e June 1991: AMOS Compiler and AMOS V1.3 are both launched.

o July 1991: AMOS-3D is released, and a streamlined beginner's AMOS is commenced. This is to be called
Easy AMOS, and published under Mandarin's new identity, Europress Software.

« August 1991: Madame Lionet begins production of a dedicated junior programmer, due for launch in May
1992.

« February 1992: Easy AMOS programming completed, AMOS Compiler updated and AMOS VI 34 finished

« March 1992: AMOS Professional evolves from AMOS improvements, Easy AMOS features and feedback
from users.

« April 23rd 1992: Easy AMOS launched.
« May 1992: simultaneous launch of German AMOS and Baby Lionet.
o Autumn 1992: the launch of AMOS Professional, with a warm welcome.

« March 1993: Baby Lionet says his first word. "AMOS!"

01.01.05

Installing Amos Professional

The AMOS Professional package contains this User Guide, an accompanying Applications Supplement, your
Registration Card and the following floppy discs:

System disc (AMOSPro_System:)
The System Disc contains the bones, muscles, heart and soul of AMOS Professional! All of the system libraries are
held here, as well as items such as communications devices, fonts and the installation program.

Examples disc (AMOSPro Examples:)
This disc is packed with hundreds of instant examples of AMOS Professional in action. These files can be
summoned up as you program, via the superb AMOS Professional Help system.

Tutorial disc (AMOSPro_Tutorial:)
For detailed step-by-step examples on specialised subjects, the Tutorial disc offers private tuition on a range of
topics, including animation, special effects, menus, Bobs and Sprites.

Accessories disc (AMOSPro_Accessories:)
This disc contains a full range of AMOS Professional Accessories.

Productivity discs 1 and 2 (AMOSPro_Productivity1:,AMOSPro_Productivity2:)

These discs feature complete AMOS Professional games and utilities. All programs are fully annotated and ready for
you to enjoy, explore and adapt. Full details of these ready-made AMOS Professional programs are contained in
your Applications Supplement booklet.

AMOS Professional Installation Procedure

To prepare AMOS Professional ready for your exploitation and enjoyment, the System Disc must be installed for all
users, and other features made accessible for hard disc users. This is very simple and all instructions are displayed on
screen, step by step. Here is an outline of the installation procedure from a floppy disc:

Step One

Take the disc labelled AMOSPro_System:, and make sure that it is write-enabled. In other words, ensure that the tab
at the top right-hand corner of the disc is in the closed position, so that it covers the small square hole. This will
allow you to personalise your copy of AMOS Professional, with your own name appearing on screen to greet you.

If your Amiga is switched on, make sure that the drive light is not illuminated, and take out any disc that may be in
the drive. Switch off your computer and wait about twenty seconds to let it clear its memory and forget any bad
habits that may be lurking there.

Place the write-enabled AMOS Professional System Disc into the internal floppy drive, and switch on.
Step Two

Sit back and enjoy the AMOS Professional animated musical introduction! After a short pause, this screen fades and
the next screen appears.

02.01.01

Installing Amos Professional

Step Three
This is the Registration Screen, asking you to type in your first name and last name, then click on the [OK] panel
with the mouse.

In this User Guide, whenever an option is referred to that appears on the screen, waiting to be selected, it is enclosed
in square brackets on the printed page.

If you make a mistake when typing, you may insert your first or last name again, and when both names are entered
correctly, trigger the [OK] button.

If for some reason this operation is unsuccessful, a screen will appear advising you what to do. Please make sure that
you are using your original AMOS Professional System Disc, and that it is write-enabled before proceeding. If all
else fails, and your disc drive is opera ling correctly, and if the disc in the drive is the original write-enabled System
disc, then there must be a fault on the disc. Please return it for a free re-duplication to:

AMOS Professional Customer Support

Europress Software Ltd.

Europa House

Adlington Park

Macclesfield

SK10 4NP

England

Telephone: 0625 859 333 (UK), or +(44) 625 859 333 (International) Fax: 0625 879 962 (UK), or +(44) 625 879 962
(international)

Fortunately, you are very unlikely to encounter a faulty disc, and there should be no problems in having your name
accepted before proceeding to the next step.

Step Four
The AMOS Professional registration screen appears, containing your unique Registration Number. Write down this
number now, and also copy your Registration Number onto the following items:

« All of your original AMOS Professional disc labels.

« The Registration Panel on the inside front cover of this User Guide.

« Your AMOS Professional Registration Card. Please return this card to Europress Software (Freepost), and
take full benefit of the AMOS Professional Customer Support service, but make sure that you have used
AMOS Professional for at least two weeks before doing so.

Remember to quote your unique Registration Number when contacting Europress Software with any enquiries.

Click on the [OK] panel to reveal the next screen.

02.01.02

Installing Amos Professional

Step Five

This is the Installation Screen, and your System Disc will now boot directly into AMOS Professional. If you want to
boot from floppy disc, press [Ctrl]+[Left Amiga]+[Right Amiga] now. Hard disc users should continue as explained
below.

In this User Guide, whenever you are asked to press a particular key, the key is enclosed in square brackets on the
printed page. When two or more keys should be pressed at the same time, a plus sign is used to link the individual
keys together. So to boot AMOS Professional from floppy disc now, you are asked to press the control key at the
same time as both of the special Amiga keys that are either side of the space bar on your keyboard, or [Ctrl]+[Left
Amigal]+[Right Amiga].

Now is the time to fill in your Registration Numbers and back up your original AMOS Professional discs. Making
copies of discs is very simple, using the AMOS Professional Disc Manager utility, which is fully explained in
Chapter 13.4.

Hard Disc Users

With the Installation Screen still displayed, hard disc users should click on the [OK] panel. The start-up sequence is
changed from running the Installer to running AMOS Professional, but the Installer can be recalled by double-
clicking on its Workbench icon.

Step Six

Hard Disc Users are taken to the AMOS Professional Hard Disc Installation Screen. When this appears, simply
indicate which items you would like installed onto your hard disc, and as each item is selected, the appropriate
number of kilobytes required will be shown. You have the option to [Quit] at this stage, in which case you will be
returned to the Workbench or CLI, depending on how the Installer was booted. Otherwise, when the required items
have been selected, click on [Install].

Step Seven

If [Install] is chosen, a file selector appears, and you are requested to select the device and current path for the
installation of AMOS Professional. After making your selection, click on [OK] to proceed to Step Eight of the
Installation procedure. Alternatively, the [Cancel] option will return you to Step Six again.

Step Eight

Everything is now automatic. If there is not enough memory available on the selected device, this fact will be
reported. You will be returned to Step Six to make a more modest selection. Otherwise, a loading and saving
sequence is displayed, consisting of an Installation report for each named file, in the form of a percentage figure and
an animated bar.

Step Nine

Once all files have been successfully installed on hard disc, a final report is displayed, along with an option to
[Quit].

The installation procedure will analyse what type of system it is being installed onto and will configure your AMOS

Professional software appropriately.
See Chapter 13.1 regarding these settings.

02.01.03

Getting Started

AMOS Professional is a truly comprehensive programming package, allowing experts to release their full potential.
It has also been designed to provide beginners with rapid access to expert techniques. However, this section is for
absolute beginners only!

If you have upgraded from Easy AMOS or its big brother AMOS, don't be too proud to skip through this Chapter
before moving on to Chapter 4.1, where the AMOS Professional Editor is explained.

Warning: if you have not yet installed your AMOS Professional System disc, please do so now by referring to
Chapter 2.1.

Absolute Beginners

A computer program is simply a collection of instructions telling a computer to perform a list of tasks. Amiga
programs are stored on magnetic discs, and because disc programs are stored magnetically, you must keep them
clear of all magnetic objects. Placing a telephone on top of a hard disc drive can be a risk, and leaving floppy discs
on top of your television set or loudspeaker system is asking for trouble. Always make back-up discs of your
programs, and store them in a safe place out of direct sunlight.

Computer programs that are stored on magnetic discs have to be "loaded" into your computer's memory. If you are
using floppy discs, here is the procedure for loading AMOS Professional:

« To explore all of the system's features, a colour television or monitor should be connected to your Amiga via
the appropriate cable. Additionally, a stereo audio system should be connected to the computer's left and right
audio sockets. Make sure that your mouse is also connected to the appropriate socket.

« Remove any disc that may be in your Amiga's internal floppy disc drive, switch off the machine, and wait at
least ten seconds.

» Place your AMOSPro System disc in the Amiga's internal floppy disc drive and switch on the computer.

« AMOS Professional will load into the machine's memory automatically.

« Remember to make back-up copies of your original AMOS Professional discs, and keep the originals in a safe
place.

Hard disc users who want to load AMOS Professional from the Workbench once it has been installed should
double-click on the AMOS Professional System disc icon, and then click on the relevant icon to run the program. If
you are running the system from CLI, simply type in:

AMOSPro

03.01.01

Getting Started

AMOS Professional has been designed to be the friendliest system available to the Amiga programmer. As soon as
it has loaded into your computer, you will be greeted by name before getting down to business! This welcome panel
will disappear automatically after a few seconds, or it can be cleared by pressing any key on your keyboard, or by
clicking a mouse button.

The Edit Screen
To create and edit computer programs with AMOS Professional, you are given a working area called the Edit
Screen. If AMOS Professional has been loaded successfully, the Edit Screen will be displayed now.

There is a complete guided tour of the AMOS Professional Editor in the next Chapter, but you will want to see some
immediate action. So instead of explaining what everything does, here is a rapid introduction to getting started.

Move the mouse around now, and observe how the mouse pointer follows your movements around the Edit Screen.
At the top of the Edit Screen there is a row of control "buttons" that are used to call up various features of the
AMOS Professional system. These little panels are triggered by dragging the mouse pointer over one of them, and
clicking with the left mouse button. You can do no harm by experimenting with any of the Edit Screen features, but
please resist the temptation to do this, and follow this brief introduction.

Identify the control button at the top-centre of the screen, displaying the letter [H]. Move the mouse pointer over it
and click the left mouse button. This is the [Help] icon, and it calls up the AMOS Professional instant Help service.
Now look at the new display on the screen, and identify the small button to the immediate left of the title "AMOS
Professional Help Window", and click on it to return to the original Edit Screen display.

Now press the right mouse button and keep it held down.

When editing, the right mouse button calls up a line of "menu" titles at the top of the Edit Screen. Run the mouse
pointer along this line of titles now, and notice how as soon as the pointer touches one of them, a selection of
further titles is revealed. Each of these items refers to a different feature of the AMOS Professional system.

With the right mouse button still held down, move the mouse pointer to the right-hand side of the line of main menu
headings, and touch the [Help] title. Keeping the right mouse button held down, move the mouse pointer to the
[Help Menu] option, so that it is highlighted in reverse video. As soon as you release the right mouse button, this
feature is called up on screen.

Please clear the Help Main Menu from the screen by pressing the small button as before.

Now look at your keyboard, and identify the large [Help] key. Press this key now, and the AMOS Professional Help
Main Menu is called up once more. Before proceeding, please clear it away again, as described above.

03.01.02

Getting Started

You are already using AMOS Professional like an expert, and have just used the three alternative methods of calling
up one of the most useful AMOS Professional features, as follows:

« Clicking on a control button, or "dialogue" box, or "icon", using the mouse. You will soon learn how to design
your own control buttons and dialogue boxes.

« Calling up a Menu and selecting one of the items on offer, using the mouse. You will also learn how to exploit
your own menu designs.

« Pressing one or more keys on the keyboard directly.

Typing in the Edit Window

If you have been experimenting, and cannot clear the Edit Screen to its original empty state, leave your machine
switched on, with the AMOSPro_System disc in the internal floppy disc drive, and press the

[Ctrl[+[Amiga]+[Amiga] keys together. This will re-boot AMOS Professional, allowing you to clear your electronic
slate.

Look at the empty Edit Screen, and identify the small flashing block in the top left-hand corner of the large area
below the row of control buttons. This is the "program cursor" and it marks the current position where anything you
type in will appear on screen. This top left-hand position marks the "home" starting point of the Edit Window,
which is where the list of instructions that make up your computer programs begin to appear.

Press the [A] key on your keyboard, and a lower-case "a" will appear in the Edit Window, shunting the program
cursor one character to the right. Now hold down one of the [Shift] keys and press [A] again. There should now be a
capital "A" next to the little "a" on screen. The [Shift] key is used to type in upper-case letters as well as any of the
symbols that are marked above the numbers and punctuation marks on your keyboard keys. So to type in a "$"
symbol, you would press [Shift]+[4] together. Type in a "$" now.

Now locate the extra-large key with a turn-left arrow on it, to the right-hand side of the main block of keys. This is
the [Return] key, and it is used to start a new line when writing programs. Please press this key once, so that the
program cursor is waiting at the beginning of a new line.

Just above the large [Return] key, there is a small key marked by a left-arrow. This is the [Delete] key, and it is used
to rub out characters already typed in the Edit Window. Please press it as many times as necessary to get rid of any
characters that you have typed, until the cursor is back "home" in the top-left corner of the Edit Window.

The mouse pointer can also be used to position the program cursor in program lists, as well as to mark out special
blocks of the program, and this will become obvious in the next Chapter.

Your first programs
Type in the following program so that it appears in the Edit Window, and then press the [Return] key:

E>Print 242

03.01.03

Getting Started

That juvenile program will wait in the Edit Window, until you tell AMOS Professional to "run" it. To run a
program, call up the list of Menu headings by holding down the right mouse button, move the mouse pointer to the
[Project] title, highlight the [Run] option and release the right mouse button.

Alternatively, use a simple keyboard short-cut for running a program, which is to press the [F1] key. Either way, the
Edit Screen will be flicked out of view, and the result of the program will be displayed on screen. In this case, the
result of two plus two will be printed on screen as "4".

There are several ways to return to the Edit Screen when a program is running. There are special commands that can
be included in the program for an automatic return, which will be explained in future Chapters, or you can break
into a program by pressing the [Ctrl]+[C] keys together, and then press the [Return] key.

If an audio system is connected to your Amiga, add the following lines to your program, so that it now looks like
this:

E>Print 242
Wait 100
Boom
Wait 200
Print "Good-bye"
Wait 50
Edit

Now press [F1] to run that program. You should already be aware that using AMOS Professional is a very friendly
method of communicating with your Amiga.

Direct Mode

So far, you have been programming your Amiga in the AMOS Professional Edit Mode, but when you are working
on a program professionally you will often want to conduct an instant experiment, or call up an AMOS Professional
feature without interfering with your current task. There is a very powerful Direct Mode provided for this purpose,
which works completely independently from the Edit Mode. To jump to Direct Mode now, use the mouse to click
on the [Arrow] button in the top left-hand corner of the Edit Screen, or alternatively press the [Esc] key at the top
left-hand corner of your keyboard.

The Direct Mode screen is flicked into view over the Default Screen, and it can be repositioned to reveal the
contents of the Default Screen behind it, by clicking on the [DIRECT] panel in the line of control buttons with the
left mouse button, and dragging the Direct Mode screen up and down. To get back to the Edit Screen, press the [Esc]
key again, or click on the [Arrow] button at the top left of the Direct mode "window".

There is a highlighted prompt in the Direct Mode window, waiting for your instructions to be typed in and displayed

next to it. After they have been typed in, these instructions will be obeyed as soon as the [Return] key is pressed,
without interfering with the program that is

03.01.04

Getting Started

currently being worked on in the Editor. Type the following line in Direct Mode now, and then press the [Return]
key.

D>Print "This is Direct Mode"

Direct Mode offers a simple way of gaining access to a disc, to examine its contents, or load some images. It also
allows you to check the results of instant tests of text, graphics and sound commands, before including them in your
programs. Try out the following lines from Direct Mode now, and remember to press [Return] after typing in each
line. The first line instructs AMOS Professional to report how many little dots known as "pixels" make up the height
of the current screen. The middle line calls for a report of how much free chip memory is available. The third line
triggers a print-out of the contents of the current disc, known as a "directory".

D>Print Screen Height
D>Print Chip Free

D>Dir
There is a full guided tour around all of the Direct Mode operations in the next Chapter.

To end this beginner's introduction, take a look at some ready-made programs that have been created by other
programmers using AMOS Professional. If you have been experimenting, and are not quite sure of everything that is
displayed on screen at the moment, leave your AMOSPro_System disc in place, and press [Ctrl] + [Amiga] +
[Amiga] to make sure that you start from scratch again.

After being greeted by your name, and revealing the Edit Screen, remove your AMOSPro_System disc and insert the
disc labelled AMOSPro_Productivityl.

Loading a program

As usual with AMOS Professional, you have a choice of how to select the loading operation. You can call up the
Main Menu titles with the right mouse button, and select the [Load] option from the [Project] menu in the usual
way. Alternatively, there is a keyboard short-cut by pressing [Amiga] + [L]. Either operation will call up a special
interactive panel called a "File Selector". A file is simply a self-contained chunk of computer data, with its own
name, held on a magnetic disc.

With the File Selector in the middle of your screen, use the mouse pointer to highlight one of the programs on offer,
and click on the [Return] icon. If you are interested in an arcade game, you can select and highlight the line that
reads Zybex/Zybex. AMOS, or if you prefer a practical program then Fileo'fax. AMOS is worth examining.

Certain programs need more memory than others, and if there is not enough memory available when you want to
load a particular program, you will be presented with a "dialogue box" on the screen, asking if you want to expand
the size of the relevant memory. When dialogue boxes are presented by AMOS Professional, you normally select
your response using the mouse pointer and clicking on the left mouse button.

03.01.05

the Editor

Welcome to the AMOS Professional Editor! It is assumed that you have either read the last Chapter, or are already
familiar with AMOS or Easy AMOS.

AMOS Professional provides one of the most effective and powerful creative environments for the Amiga
programmer. It is also incredibly simple to use. Here is a synopsis of the AMOS Professional enhancements and
improvements over the previous incarnations of the Editor.

« The size of the Editor working area has been dramatically increased.

« The increased working area is made possible by the provision of a comprehensive system of pull-down menus.
The main menu headings are invisible until they are revealed by pressing the right mouse button. The second
part of this Chapter provides a detailed guided tour of the vast selection of menu options.

« The on-line Help system that was offered by Easy AMOS has been enhanced beyond recognition! Instant
Help is available for any command, offering definitions, correct syntax and working examples. This allows
instant insights into the hundreds of new commands provided by AMOS Professional for existing AMOS and
Easy AMOS users. Chapter 4.2 contains a full analysis of the Help system.

« A Monitor accessory can be called for analysis and reports of actual program listings, and this is explained in
Chapter 12.1.

« AMOS Professional features a split-screen Editor, allowing you to flick from program to program with a
single mouse click.

« There is immediate access to printer support, and listings can be printed by selecting a single menu option.

« The block system has been dramatically improved, and given its own mode. Block Mode can be entered by
double clicking on the left mouse button, or by summoning the [Block] menu.

« The SET BUFFER command is now intelligent, allowing you to increase the memory area at any time,
without the necessity to save programs first.

« Finally, the File Selector is new, improved and extremely friendly!

The AMOS Professional Editor is very easy to use, and it may be tempting to pick up the system as you go along,
particularly if you have experience of AMOS or Easy AMOS. After a few weeks of use, the exploitation of the
Editor features will become almost instinctive.

However, if you plunge into the system without a little guidance, you may well end up using only a fraction of the
Editor's potential capability. The sheer power of the system is vast, and it would be a pity to overlook some of its
exciting features. It is possible that you may only need to refer to this Chapter once, but please make sure that you
are aware of everything that the AMOS Professional Editor has to offer.

The AMOS Professional Editor

The purpose of the Editor is to make it as easy as possible to create, adapt and modify AMOS Professional programs
via your screen. To achieve this, the Editor provides a range of tools that have been designed with the sole purpose
of saving Amiga programmers time, trouble, frustration and confusion. It also short-circuits the need for ugly,
complex program listings!

The Editor is intelligent, and will recognise AMOS Professional instructions as they are typed in, allowing mistakes
to be corrected immediately.

04.01.01

the Editor

You can even tidy up your program listings with an automatic indenting option, and make them pleasing to the eye
and more accessible to the brain.

You are able to move through your streamlined listings at high speed, jumping from one label or procedure to the
next. The procedures themselves are complete program modules that can be compacted into a single line of your
listing by "closing" them.

Wherever possible, the AMOS Professional Editor will call up Help at the touch of a button, whenever you need it.

The Edit Screen
Here is a diagram of the AMOS Professional Edit Screen. There follows a short guided tour of its features.

L0 I ma i 3 VA = il e 2] s e e {Iws
[Window=T T[T -1 Free-26388 Edit-AMAC_I.AMOS [=[o
R R R R R R R A R I
:* AHOS Professional

AHAL_3 Amal Functions

:: (c) Europress Software

:* Ronnie Simpson

‘Functions for returning the position of the mouse pointer in hardware

:cuurdlnate5.
Let RB=XH Let Y=YM

"Functions for returning the status of the mouse keys, Ki for left key and
'K2 for the right, _ :
‘Functions returns -1 (true) if the button has been pressed otherwise they
:return B (false)

:eg. If K1 Junp Lable Let RB=K{

The Edit Icons

I The [<D] button at the top-left of the screen is used to go into Direct Mode. This is also achieved by pressing
the [Esc] key. Direct Mode is fully explored later.

m The [WB] button at the top-right of the screen is used to go to the Workbench. If AMOS Professional has been

loaded from the Workbench, it will remain in memory, and you can return to AMOS Professional by pressing [Left
Amigal+[A].

04.01.02

the Editor

The [WB] button will have no effect if the CLOSE WORKBENCH command has been called from one of your
programs, as explained in Chapter 13.1.

Between the [DIR] and [WB] buttons, there is a line of icons that provide rapid access to various features, directly
from the screen. From left to right, they have the following uses:

! As usual, all of these icons are activated by the left mouse button. This is the [RUN] button, and it is used to

run the current program listing. If any errors are encountered in the program, a message will be displayed in the
Information Line.

‘f The [TEST] button instructs AMOS Professional to test the current program for errors, without running the

pgram. A full list of error messages is listed in Chapter 12.3, and the Help facility is available to explain the
correct use and syntax of instructions.

E [INDENT]. Use this button to automatically indent your program listings. Where example programs are printed
in this User Guide, they are displayed in indented format.

Im This icon is used to summon up the AMOS Professional [MONITOR], which provides detailed help and

analysis of your programs. A full explanation of the Monitor can be found in Chapter 12.1.

n [HELP]. The next Chapter provides a detailed examination of the AMOS Professional help facilities. Use this

button to call up the Help main menu.

- i. [UNDER] and [ABOVE]. This pair of buttons is used to display the window which is under or above the

current window, in other words it moves to the previous or next window.

m The [INSERT/OVERWRITE] button toggles between the two modes of editing, which are explained in the

paragraphs concerning the Information Line, below.

BN The [PROCEDURES] icon is used to open or close a procedure. Unlike the image of the last button, which is a
——
toggle, this icon is an animation, and after being activated it returns to its original state.

E This icon represents [INSERT A RETURN], and its use is dealt with in the explanations of the menu options.

m The two indicator bars to the right of the above icon buttons display the amount of Chip and Fast

memory that is currently being used.

04.01.03

the Editor

The Editor Window
The windows that hold program listings appear immediately below the row of Edit icons.

At the top of each window is an Information Line, that displays the title of the current "project" and provides a
status report. It also displays three Edit Window Icons, as follows:

ﬂ At the left-hand side of the Information Line, there is a small [CLOSE] icon. This closes the current window
and erases its contents.

Since this is a drastic action, you will be asked to confirm your intentions before the window is closed. Select
[Cancel] to abort the closing operation, and leave the current program intact. Please note that when the last window
is closed in this way, the program will be erased and the window will be left clean, ready for your next editing
action.

You may wish to open a new window now, before experimenting any further. Please hold down the right mouse
button and with the button held down, drag the mouse pointer to the [Project] menu heading and highlight the [Open
New] option. Now release the right mouse button, and a new window will be opened at once. You can open more
windows if you wish, to prove how simple this is, and then close them again with the [CLOSE] button.

You are allowed as many active windows as you wish, providing that there is enough screen space. Once a window
has been opened, it may be re-positioned by dragging its Information Line using the left mouse button, and its size
can be changed by dragging its lower border in the same way.

Only one window can be active at a time, and this is used for all current editing operations, and menu selections. If
there is more than one window open, an individual window is selected by simply clicking on its contents with the
mouse. A flashing cursor will be positioned over the relevant programming line. The Information Lines of any
inactive windows are reduced to a dull display, leaving the current active window's display in its original bright
condition.

There are two other icons at the right-hand end of the Information Line.

I The [HIDE] icon is used to hide a normal program from the display. Hidden "accessory" programs are available
directly from the [AMOS] main menu. Accessories are discussed at the beginning of Chapter 13.1.

E This icon is the [COMPRESSOR] button, and it is used to compress a window to a single title line, revealing
and windows underneath. To expand a window to its original state, simply click on this icon again.

The Information Line
Between the window icons, the Information Line offers the following status reports, from left to right.

04.01.04

the Editor

The number of the window is displayed first, starting from 1.

The current Editing mode is displayed next. An I means that new characters that are typed in will be inserted
wherever the edit cursor is on the screen. This is the default status. 0 indicates that new characters will overwrite
characters that are already displayed in the Edit Window.

L and C indicate which line and which column are currently being edited, in other words, the current location of the
program cursor.

Free indicates the amount of memory available to hold your listing. The normal setting of approximately 32k can be
increased at any time, via a simple menu option.

Edit lists the filename of the current program. If it is not yet saved onto disc, it will be assigned the name "New
project".

The Scroll Bar

To the right of the window area, there is a thin vertical bar. This can be dragged with the mouse to move your
window over the current program listing. The window may also be scrolled vertically or horizontally by clicking
anywhere along the edges of the display. Moving through a long program listing is explained later, in the menu
options and their equivalent keyboard short-cuts.

If you click on the left mouse button and then hold down the right mouse button, the slider will move rapidly
through the listing, page by page. All AMOS Professional sliders operate on a similar principle.

Direct Mode
If you read through the last Chapter, you will be familiar with the purpose of the AMOS Professional Direct Mode,
otherwise it is assumed that you already have experience of the AMOS or Easy AMOS Direct Mode operations.

The AMOS Professional Direct Mode has been completely redesigned and vastly improved! Here is a synopsis of
the major enhancements,

« It is completely independent of the current program screen.

« The size and position of the Direct Mode Window can be changed instantly.

« Ifnecessary, all screen and graphics operations can be forced onto the Direct Mode Window rather than the
current program screen, using the new [OUTPUT] facility.

« [OUTPUT] also allows directory listings and the contents of variables to be displayed via Direct Mode,
without destroying an existing game or utility screens.

« The "history buffer" that stores lines already typed via Direct mode is now accessed with the [up arrow] and
[down arrow] keys, similar to the Shell program from the Workbench. The contents of the history buffer is
remembered when you leave Direct Mode, ready to be called up when you return.

Please enter Direct Mode, now either by clicking on the [DIR] button in the Edit Window, or by pressing the [Esc]
key.

04.01.05

the Editor

The Direct Mode working screen will appear, looking like this:

e — e = e e

E hriric b o i il 5 Al ey e BT TR

The Direct Mode screen has a bar of useful icons above a large window area where commands are entered and their
results displayed.

- The [<E] button at the top-left of the screen is used to return to Edit Mode. This is also achieved by pressing the
[Esc] key.

m The [WB] button at the top-right of the screen is used to go to the Workbench. If AMOS Professional has been

loaded from the Workbench, it will remain in memory, and you can return to AMOS Professional by pressing
[Amiga]+[A]. The [WB] button will have no effect if the CLOSE WORKBENCH command has been called from
one of your programs, as explained in Chapter 13.1.

. To the right of the "DIRECT" identification panel is the [OUTPUT] icon. This is used to toggle the display of all
operations between the Direct Mode window and your program screen. If selected, operations will be performed in
the Direct Mode window, and the program display will remain untouched. To return to normal, simply select the
[OUTPUT] button again. Please note that only text output is permitted within this window.

The row of ten icons between the [OUTPUT] and [WB] icons are the equivalent of pressing one of the Direct Mode
function key pre-sets [F1] to [F10]. Selecting one of these icons with the left mouse button is the same as pressing
the equivalent function key. Selecting a button with the right mouse button is the equivalent of pressing
[Shift]+[Function key].

04.01.06

the Editor

Here is a list of the pre-set commands called by these icons. Experienced AMOS programmers will already be
familiar with their meanings, and new users will be introduced to them in the following Chapters. The following
function key assignments are for Direct Mode only, and should not be confused with the operation of function keys

from Edit Mode.

Left Mouse Button (LMB). Right Mouse Button (RMB)

e
=
w

LIST BANK
RMB SCREEN CLOSE
LMB DEFAULT

RMB SCREEN OPEN
LMB DIR

RMB WIND OPEN
DIRS

RMB SCREEN CLOSE

LMB PARENT

RMB BOB OFF: SPRITE OFF

LMB LOAD BANK

RMB FREEZE

LMB SAVE BANK

BE B EEEEHSB
e
=
o

RMB UNFREEZE
§3l LB LOAD IFF
RMB AMAL OFF

SAVE IFF

-
=
W

RMB EDIT

[F1]
[Shift]+[F1]
[F2]
[Shift]+[F2]
[F'3]
[Shift]+[F3]
[F4]
[Shift]+[F4]
[F5]
[Shift]+[F5]
[F6]
[Shift]+[F6]
[F7]
[Shift]+[F7]
[F8]
[Shift]+[F8]
[F9]

[Shift]+[F9]

04.01.07

the Editor

; Ml LMB return a file's full path string [F10]
It
RMB SYSTEM [Shift]+[F10]

The Direct Mode window can be moved around the screen by dragging it with the left mouse button, or by pressing
the [Ctrl] + [Up Arrow] and [Ctrl] + [Down Arrow] keys. The size of the Direct Mode window is changed by
dragging its bottom border, or by using the [Shift]+[Up Arrow] and [Shift]+[Down Arrow] keys.

You are reminded that the [Up Arrow] and [Down Arrow] keys are also used to recall up to twenty previous lines
entered in Direct Mode. Simply hit the [Return] key to execute any recalled line. The number of lines that can be
recalled may be changed from twenty to anything in the range of zero to 128, and this process is explained in
Chapter 13.1.

To end this examination of AMOS Professional Direct Mode, your attention is drawn to the prompt line at the lower
left of the Direct Mode Window. The AMOS Pro> prompt is highlighted, and marks the position at which your
typed instructions will appear. The prompt itself awaits your instructions, which will be executed as soon as you
press the [Return] key.

The File Selector
Please summon up the File Selector now. Simply go to Direct Mode and press [F10] on your keyboard.

Programs are stored on discs as "files", and each is given an individual file name. The File Selector is a means to
gain access to individual files, and Chapter 10.2 is devoted to all the aspects of files stored on disc.

The AMOS Professional File Selector is faster than its AMOS and Easy AMOS predecessors, it offers more features
and it happens to be a lot better looking! The physical size and positioning of the File Selector can be changed to
your own preferences and this is explained in Chapter 13.1. When the AMOS Professional File Selector is
summoned, it appears like this:

File Selector

AHOSPro. info
HFSEEten info

Dis f
Editor_Config,AMOS

-FD_ ystem, €%

e

04.01.08

the Editor

Please note that a maximum of 10k is needed to open the AMOS Professional File Selector. If memory does not
allow for the File Selector to be opened, a simple input line will be displayed instead, inviting you to enter a file
name. If this very rare situation happens, type in the name of the file you wish to load or save, and press [Return].

The standard AMOS Professional File Selector features a window displaying the names of all the files stored on the
current disc. There is a slider bar to the right of this window, as well as a pair of Up/Down arrows, allowing you to
scroll through the file names. By using this slider, all available paths can be displayed, without the need to specify
path names.

On the right-hand side of the File Selector is a column of buttons offering the following facilities, from top to
bottom:

[OK]

This affirmative button informs AMOS Professional that you are satisfied with the current situation and dismisses
the File Selector, returning you to the current program. It can be used to save the current program to disc, after you
have typed in the new program name in the input line at the bottom of the File Selector. Whenever you click on
[OK], AMOS Professional automatically sets its current directory to the directory of the File Selector.

[Cancel]
Cancel your current operation by clicking on this button.

[Parent]
Because the hierarchy of individual files can get complex, it is sometimes necessary to negotiate a path through the
current directory. A full explanation of this subject is covered in Chapter 10.2.

[Devices]
This is used to call up a list of all devices. In other words, the available hardware items, such as disc drives.

[Assigns]
When this option is selected, only the current assigns are listed.

[Sort]
If this button is in the "on" position, files will be automatically sorted when they are read from the disc, and listed in
order. The File Selector will remember the setting of the [Sort] button when it is next called.

[Sizes]
If this button is "on", the size of each file will be displayed. This setting is also remembered when the File Selector
is subsequently called.

[Get Dir]
This button re-reads the current disc directory, and can be useful if the floppy disc has been changed.

04.01.09

the Editor

[Store]

The system works normally if this button is "off", but as soon as it is clicked "on", the directory is stored in
memory. If there is enough memory available, up to ten different directories may be stored with this facility. The
positions in the list are stored along with the list of files themselves, so that next lime you request a directory,
AMOS Professional will scan the list of stored directories and attempt to match any requested path names. If
successful, the directory is displayed instantly, and if unsuccessful, a normal search of the disc will take place.

Below this column of buttons, there is a small slider display indicating available memory. The small [X] button to
the right of this slider is used to erase the current directory from memory. Note that releasing the [Store] button will
erase all stored directories.

Please note that before available memory is exhausted, AMOS Professional will automatically "flush" stored
directories, freeing as much memory as possible.

« You can move the File Selector to another position on screen by dragging the title bar with the left mouse
button.

o The [Up Arrow] and [Down Arrow] keys can be used to scroll through the list of files.

« The [Tab] key can be used to change the path or name of the edit zone.

« To summon a new directory, either use the [Get Dir] button or press the [Enter] key.

« If error messages are displayed in a small requester, they can be dismissed by a mouse click or by pressing
any key.

« Because AMOS Professional stores directories in their most recent state, you should use the [Get Dir] option
to re-display a large directory that has not had time to be fully displayed when it was stored.

« The amount of RAM used by the File Selector depends on the size of the screen and the number of files. File
selector routines require 2k, and each file requires its length plus ten bytes (so 100 files of 16 characters needs
3k.)

Saving and loading a program

Once you have created an AMOS Professional program, it can be saved onto disc using the [Save] option from the
[Project] menu, or by pressing [Amiga]+[S]. The File Selector will appear, and you can enter your file name, them
press [return] to save it onto the disc.

Programs are loaded using the same system. Select the [Load] option from the [Project] menu, or press [Amiga]+[L].
Alternatively, you can load a program into a brand new window using the [Open & Load] option, explained later.
Choose the name of the program to load by highlighting it in the File Selector window, then press [Return]. It's as
simple as that.

If your current program is too large for the current Editor window, a dialogue box will appear asking if you wish to
adapt its size. Selecting the [Yes] option will increase the memory to the minimum amount required for holding
your program. To add extra lines will prove impossible unless you make some deletions first. By pressing the [No]
option, a SET TEXT BUFFER operation will be called, setting the buffer area to the exact size required for the
current program. You can now increase the size of the buffer area as required.

04.01.10

the Editor

Autosave and Autoresume

As a default, you will be automatically prompted to save the results of your current programming session every 30
minutes. A separate Autosave dialogue box will be displayed for each window on screen. Pressing [Return] or
clicking on the [Yes] button will save your program to disc under its current file name automatically. If the program
has not been previously saved, the File Selector will be summoned inviting you to enter the new program name. The
time elapse between Autosaves can be changed to your own choice, using the configuration options detailed later.

The [Quit options] item from the [Config] menu allows the automatic saving of the current programming
environment to disc, whenever you leave AMOS Professional. This environment includes all current programs,
along with a complete list of currently open windows. Even the cursor positions are saved! This means that when
you return to AMOS Professional, your screen is exactly as it was, and you can re-commence your programming
session at the point from which it was left. This facility is intended for hard drive users, although it can be exploited
if you have an additional floppy disc drive, provided that you boot AMOS Professional directly, as opposed to from
the Workbench, and save your programs on the additional external floppy drive. Your start-up disc should be write-
enabled to allow AMOS Professional to load in this way.

The AMOS Professional Editor Menus

The following section of this Chapter contains a comprehensive explanation of every option available from the
AMOS Professional Editor Menus. The menus are examined in the order that they appear, from left to right, when
the right mouse button is pressed to reveal them. All menu headings, menu options and sub-menu items that can be
selected via the mouse are shown between square brackets. Where selections can also be made via the keyboard, the
keys are also shown in square brackets. A function key appears like this [F1], and a key in the numeric keypad
appears like this [N1]. For example:

[About AMOS Professional]
This indicates that the menu option is selected by highlighting it with the mouse pointer, and then releasing the
mouse button.

[Run] or [F1]
This means that the option can be chosen via the mouse, or it can be summoned by pressing a single function key.

[Save As] or [Amiga]+[Shift]+[S]
In this case, the option may be selected using the mouse, or by pressing the indicated combination of keys together.

Main menu headings are shown in large bold type, with their options printed in smaller bold type. Where an option
has its own sub-menu, the items in the sub-menu are shown in standard type, as follows:

Main menu heading
[Set Editor] Menu option
[Setup] Item in option sub-menu

04.01.11

the Editor

Here is the list of the AMOS Professional Editor Menu options.

AMOS

The [AMOS] menu appears in the top left-hand corner of the screen, and provides information and control of
accessory programs via the following options:

[About AMOS Professional]
This displays a title box, and indicates the number of any extension files that have been installed into AMOS
Professional, such as the music extension or picture compactor extension.

[About Loaded Extensions]

This option displays detailed information about all extensions that are currently loaded. Each extension has its own
title screen, and the list can be examined via the [Prey] and [Next] buttons. Click on [Cancel] to return to the Editor
Screen. You are free to create your own extensions for use with the AMOS Professional system, and more
information on this topic can be found in Appendix D of this User Guide.

[Load Accessory]

When this option is selected, a file selector is opened, allowing any AMOS Professional program to be loaded as an
accessory. Unlike normal programs, accessories are hidden away in memory, and do not need their own window in
order to work. Accessories can be run by selecting their name from this [AMOS] menu list, and if this is done, the
following options are presented:

[Run]
This runs the accessory immediately, without affecting the existing programs.

[Edit]
Use the [Edit] option to copy the selected accessory into a new window, allowing it to be edited directly on screen.

[New]
This erases the accessory from memory, and removes its reference from the AMOS Professional menu.

Please note that the last three options may not be assigned to a keyboard short-cut. If you want to install the
program as a normal menu item, the [Set Program to Menu] option should be used instead. Please refer to the
[Config] main menu for details.

[New All Accessories]
This option is used to delete all accessories from memory. You will be asked to confirm your action before the
deletions are executed.

[Quit]
This quits AMOS Professional completely, and returns you directly the Workbench or CLI.

04.01.12

the Editor

A number of features are provided to save vital data to disc automatically before you quit AMOS Professional, and
these are explained near the end of this Chapter in the [Config] Main menu section.

This menu provides all of the options that are used to manipulate program listings, and existing AMOS and Easy
AMOS users will find some familiar commands here.

[Run] or [F1]
This runs the AMOS Professional program that is in the active window.

[Test] or [F2]
This triggers a check through your program listing, searching for any syntax errors. If a problem is encountered, a
report is given on the screen.

[Indent] or [F3]

Use the automatic indentation system to make program listings easier to read. Extra spaces are added at the
beginning of all lines that belong to particular sorts of routines, and similar indenting is shown throughout the
example programs printed in this User Guide.

[Monitor] or [F4]
See how your programs run and operate under the AMOS Professional Monitor. Chapter 12.1 explains all the
monitor's operations in details.

[Open New]| or [Amiga]+[Shift]+[W]
This is used to open a completely new window on the editor screen.

[Open & Load] or [Amiga]+[Shift]+[L]
This is a fast method of loading a program directly into a new window. After it opens the window, the program is
loaded via a standard File Selector.

[Load] or [Amiga]+[L]

This will load a program into the current window, and any existing contents of this window will be completely
erased. If the new program is larger than the available editor buffer space, the following dialogue box appears on
screen:

Text Buffer too small. Adapt size?

If you click on the [YES] response, the size of the buffer will be set to the absolute minimum needed to hold the
program, and it should only be used if you do net intend to make any further changes, because the buffer will be
filled to capacity.

By selecting [NO], the [Set Text Buffer] option will be called from the [Editor] main menu, allowing you to expand
the buffer to any required value.

[Save] or [Amiga]+[S]

This option is used to save your AMOS Professional program to disc. If there is no existing filename for the
program, a request is made to enter a new name via a standard File Selector. If the name already exists, the program
will be copied into the original file immediately.

04.01.13

the Editor

[Save As] or [Amiga]+[Shift]+[S]
This saves the existing program under a new name. A selector will be displayed on screen to allow the destination
file to be selected.

[Close] or [Amiga]+[Shift]+[Q]
When this option is chosen, the active window is closed down and its contents are completely erased. If the window
has been set up using the split-screen option, the original source listing will remain intact.

[New] or [Amiga]+[Q]
Using this option will delete the current program, leaving its window in position, ready for further editing.

[Hide] or [Amiga]+[H]
This closes the present screen window, and hides the program into memory as an accessory. This program may now
be called from the [AMOS] Main menu heading directly.

[Hide]
can only be used if there are at least two windows on the screen, and the last window on display cannot be hidden. If
a split screen is hidden, all splits are erased and the window is then hidden.

[Print] or [Amiga]+[P]
If there is an active printer connected to your Amiga, this option can be used to list the current program directly onto
paper.

[Merge] or [Amiga]+[M]
With this option you can merge in from disc another file that was previously saved as an normal AMOS Professional
program. This allows you to merge in libraries of routines when you need them.

[Merge Ascii] or [Amiga]+[Shift]+[M]
This merges an Ascii text file into the current program listing.

For large listings, the merging-process can take a few minutes to complete, so patience may be needed.

[Check 1.3] or [Amiga]+[Shift]+[I]

Calling all AMOS users of version 1.3! This option performs an automatic test on your AMOS Professional
programs to see if they are compatible with AMOS v1.3. A search is made for any commands that are not available
to AMOS v1.3, as well as any memory banks with an index number above 16. A message will be generated
informing you whether or not your AMOS Professional program can run under AMOS v1.3.

The Editor will save the correct header automatically. If it is compatible with AMOS v1.3, that header will be used,
otherwise the AMOS Professional header will be employed.

04.01.14

the Editor

[Information] or [Amiga]+[I]
This option calls up a useful information panel, where details of the current programming session are summarised
like this:

AMOS Pro Editor Information

Free Chip Ram: (the amount of available memory for sound and graphics)

Free Fast Ram: (available space for listings, menu banks and dialogue
routines)

About current program

Text Length: (memory assigned to the editor window)

Bank length: (memory used by your banks)

Number of visible lines: (the size of the program in lines)

Number of instructions : (the total number of instructions in the program)

The [Editor] main menu heading provides the gateway to all of the vital editing commands. It is divided into a set of
sub-menus, each of which provides a group of important related options.

[Procedures]
This displays a small sub-menu that contains all of the options needed to fold and unfold procedure definitions. The
use of procedures is described in detail in Chapter 5.5.

[Open/Close] or [F9]

This option is used to fold or unfold the single procedure which is currently under the cursor. After this has been
done, the whole program is checked for errors, and if a problem is encountered, an appropriate message is displayed
on screen, and the operation is aborted. If all is well, a closed procedure will be opened to reveal all of its original
contents, or an open procedure will be folded away and be replaced by a single line containing nothing but the
procedure's name.

Closed procedures can be cut and pasted as usual, but they cannot be deleted using the editor keys. To remove a
folded procedure, the [Cut] option should be used.

[Open All] or [Amiga]+[Shift]+[O]
Use this option to open all currently folded procedures, displaying the current program in its original glory.

[Close All] or [Amiga]+[Shift]+[C]
This folds all procedures into memory, leaving a single procedure name line for each one.

[Insert Program]
This option is used to load a machine language routine directly into the selected procedure. This procedure will now
be closed and its existing contents will be replaced by the new code. Please see Appendix A for full details.

[Windows]
The windows menu is used to set the size and position of editor windows. Here is a list of the menu items:

04.01.15

the Editor

[Previous] or [F6]
This moves the cursor up to the window above the currently active window.

[Next] or [F7]
When this option is selected, the cursor is positioned over the next window on the display.

[Flip Size] or [Amiga]+[N5]
This reduces the window to a single title line, keeping it displayed and out of the way.

[Split] or [Amiga]+[Shift]+[V]
When a new window is opened on the current program via this option, it can be freely positioned anywhere in the
listing. This allows several different sections of the program to be displayed on screen simultaneously.

Please note that this option does not create a separate copy of the program listing in memory, it simply splits a
single listing between a number of different windows. This means that any changes will be shown on all of the
relevant windows as soon as they are made.

The [Split Screen] option can be de-activated by the [Close] command in the [Project] menu, explained earlier. It
can also be turned off with the [Close Window] icon on the window title.

The window title lines will change automatically to reflect the new mode, with the "Edit" message to the left of the
filename being replaced by "Split".

[Link cursor] or [Amiga]+[C]
This links the movements of the text cursor between any two windows. This means that whenever one of the
selected windows is scrolled through, the other will keep in step.

The source window is the window which is currently active, and a request will be made to select the destination
window as soon as [Link cursor] is selected. To make your choice, move the mouse pointer over a window and click
once on the left mouse button. The source and destination windows are now linked together. To separate them,
trigger [Link Cursor] again and click on the source window.

This option is very useful for copying data from one program to another, as well as for comparing two programs,
line by line.

[Move up] or [Amiga]+[Shift]+[N8]

[Move down] or [Amiga]+[Shift]+[N2]

These two options move the top of the current window up or down in units of eight pixels, which is one screen line.
It is also possible to position the window directly, by dragging the mouse pointer on the window title with the left
button.

[Expand] or [Amiga]+[N2]
This moves the bottom border of the window eight pixels downwards, increasing its size by one screen line.

04.01.16

the Editor

[Reduce] or [Amiga]+[N§]
To reduce the bottom border of the window, use this option to position it higher by one screen

Macros

The [Macros] menu allows a whole string of editor commands to be assigned to a single key-press.

[Enter a New Macro] or [Ctrl]+[M]

After selecting this option, you will be asked which key-press is to be allocated to the new Macro. This can be a
single character or a combination of keys that are to be pressed together. Macros work by referring to the "scan
code" of keys rather than the actual character value. This means that any key or combination of keys can be
assigned independently, including the keys from the numeric keypad, providing that the following rules are obeyed:

« Other Macro definitions may not be included. They will be completely ignored!

« Each Macro definition can hold up to 400 key presses.

« Menu short-cuts can only be used if they do not call up a dialogue box, so the keys allocated to [Search New]
are not available, but the [Search Next] and [Search previous] keys will work without problems.

« If your key combination has been previously assigned to a menu item, the existing short-cut keys will be de-
activated and the new Macro definition will take priority.

Once a new Macro has been defined, click on a mouse button to save it into memory. To keep Macro definitions,
they can be saved directly onto disc using the [Save Macro] option explained below.

[Delete One Macro]
Simply select the Macro to be deleted by pressing its key combination. It will then be deleted from memory. This
memory space will now be released to the main AMOS Professional system.

[Delete All Macros]
This option is used to erase all Macro definitions in a single operation.

[Load Macros]
This loads a named Macro file from disc.

[Load Default Macros]
Use this option to load the AMOSPro.Macros file from the APSystem folder.

[Save Default Macros]
This saves all defined Macros into a special file on disc, named AMOSPro.Macros. In future, whenever AMOS

Professional is run, the saved Macros will be loaded instantly.

If necessary, Macro definitions can be saved automatically, whenever you leave AMOS Professional. This process is
detailed below, under [Quit Options] in the [Config] Main Menu heading.

04.01.17

the Editor

[Save Macros]

When this option is called, a file selector is opened with a request for a filename to be given. All Macro definitions
will be saved in the chosen file onto disc. This can be used to create special Macro lists for particular programming
tasks.

While working on a very long program, a great deal of time can be wasted moving back and forth through the
listing. The next selection of menu options is used to control up to ten markers, which allow a specific position in
the listing to be marked and saved.

[System Marks]

The first, second and third Marks are automatically loaded with your last three cursor positions, so if you move to a
new label, or execute a [Search/Replace] operation, for example, you can jump back to the previous location
instantly.

The Mark system works like a stack, and every time you move to a new location in the program listing, the position
of the cursor in added at the bottom of the stack, with the oldest Mark being discarded from the top of the stack.

When the [System Mark] option is chosen, the following simple sub-menu is presented:

[Goto 1] or [Ctrl]+[N1]
[Goto 2] or [Ctrl]+[N2]
[Goto 3] or [Ctrl]+[N3]

These three options are used to jump directly to the last, second to last and third from last cursor positions.

[User Marks]

These marker points can be user-defined anywhere in the current program. The Marks are set by holding down the
[Ctrl]+[Shift] keys, and pressing a key from [4] to [9].Once a Mark has been set in this way, it can be jumped to by
holding down the [Ctrl] key and pressing the appropriate number key.

The [User Marks] option presents two lists of Mark numbers from [4] to [9]. By highlighting one of these items, an
additional menu is presented allowing you to [Set] or [Goto] the chosen Mark.

[Cursor Move]

This option is provided to show a representation of the movement keys from within the menu. Once you have
become familiar with the various key combinations, it is probably faster to control movements directly from the
keyboard. Here are the various items in this menu:

[Goto Line Number] or [Amiga]+[G]

This is used to move the cursor directly to a specified line, and a dialogue box is presented ready for the line number
to be entered. The lines in the listing are counted from the top, starting at line number one. Closed procedures are
treated as a single line. Press [Return] or click on the [OK] button to jump to the specified line.

04.01.18

the Editor

[Previous Label] or [Alt]+[Up Arrow]

This is used to jump directly to the previous label or procedure definition in the program listing.

(Next Label] or [Alt][+[Down Arrow]

Use this option to jump to the next label or procedure definition in the listing.

[Text Top] or [Ctrl]+[Shift]+[Up Arrow]
This will display the program listing from the very first line.

[Page Up] or [Ctrl[+[Up Arrow]
Scroll the program listing up by one window page, using this option.

[Page Top] or [Shift]+[Up Arrow]
This moves to the top of the current window.

[Page Bottom] or [Shift]+[Down Arrow]
Jumps directly to the bottom of the current window.

[Page Down] or [Ctrl]+[Down Arrow]
Scrolls the program listing down by a single window page.

[Text Bottom] or [Ctrl]+[Shift]+[Down Arrow]

Use this option to move directly to the last line in the program listing.

[Line Start] or [Ctrl]+[Left Arrow]
jump to the beginning of the current line in the listing.

[Word Left] or [Shift]+[Left Arrow]
This is used to move to the previous word in the program listing.

[Word Right] or [Shift]+[Right Arrow]
The cursor is placed over the next word in the program listing.

[Line End] or [Ctrl]+[Right Arrow]

This option moves the cursor to a position immediately after the last character in the current line.

[Insert/Delete]

Here is a list of the options available for inserting and deleting in program listings:

[Clear Line] or [Ctrl]+[Q]

This is used to delete the entire line in which the cursor is currently positioned, leaving a blank line in its place.

[Delete to S.O.L.] or [Ctrl]+[Backspace]

This erases all characters from the current position of the cursor backwards to the Start Of the current Line.

04.01.19

the Editor

[Delete Left Word] or [Shift]+[Backspace]
The word to the immediate left of the cursor is deleted by this option.

[Delete Right Word] or [Shift]+[Del]
This erases the word in the current line immediately to the right of the cursor.

[Delete to E.O.L.] or [Ctrl]+[Del]
Use this option to erase all characters from the current cursor position forwards to the End Of the current Line.

[Delete Line] or [Ctrl]+[Y]
This completely erases the current line, and the program listing scrolls upwards one line to fill the gap.

[Insert Line] or [F10]
This option is used to insert a blank line at the present position in the program listing.

[Tab Right] or [Tab]
Move the cursor right, to the next Tab setting.

[Tab Left] or [Shift]+[Tab]
This is used to move the cursor one position left to the previous Tab setting.

[Set Tab] or [Ctrl]+[Tab]
This option is used to set the distance in characters between successive Tab stops.

[Set Text Buffer] or [Amiga]+[Shift]+[T]
This is the option which is used to change the size of the memory area assigned for program listings. Each window
has its own separate text buffer, which can be set independently.

A dialogue box appears, allowing a new text buffer size to be entered directly. If the memory allocation is increased,
the new space can be used immediately from the Editor. However, if the new memory setting is smaller than the
previous value, the existing contents of the window will be lost!

[Undo] or [Control]+[U]

This powerful option is used to erase every character edit, movement and block operation that has been created in
the current editing session. You simply keep calling Undo to work back through the changes you made before
calling Undo.

A call to CLOSE EDITOR or the running of a program will clear all the Undo memory store.
[Redo] or [Control]+[Shift]+[U]

As a fail-safe against a hasty undoing operation, this option is provided to re-write everything that has been erased
by an [Undo].

04.01.20

the Editor

The [Block] Main Menu heading reveals all of the cut-and-paste commands which enable the fast copying,
movement and deletion of blocks of a program listing. Here are all the options:

[On/Off] or [Ctrl]+[B]
Use this option to toggle between the Block mode and the normal Editing mode. The same change is achieved by
double clicking on the left mouse button.

As soon as the Block mode is entered, the text cursor is replaced by a solid block cursor, at the current position.

A Block is set by holding down the left mouse button, and dragging the cursor to the desired destination point.
Alternatively, the dimension of the Block can be set directly from the keyboard using the [Up Arrow] and [Down
Arrow] keys. When a Block is set, it will be marked by inverse video highlighting.

Unlike the original AMOS system, AMOS Professional Blocks can be marked out in units of a single character, so
the beginning and end Block positions should include whole command words.

Blocks can be freely copied between different windows, by grabbing a Block into memory from the source window
with [Store] or [Ctr1]+[S], and then clicking in the relevant line of the destination window followed by [Paste] or
[Ctrl]+[P].

[All Text] or [Ctrl]+[A]
This selects all text in the current file, ready for block operations.

[Store] or [Ctrl]+[S]
This option is used to store the marked Block into memory, ready for a subsequent [Paste] operation. The
highlighting of the Block will be removed, and you will be returned to Editing mode.

[Cut] or [Ctrl]+[C]
This grabs the marked block into memory, and cuts it out of the program listing completely.

[Paste] or [Ctrl]+[P]
To insert an exact copy of the Block at the current cursor position, use this option for a Block that has been saved
with a [Store] or a [Cut] option.

[Forget] or [Ctrl]+[F]
This option is used to erase a stored Block from the computer's memory.

[Print] or [Ctrl]+[Shift]+[P]
If a printer is connected and ready to print, this option is used to list the Block directly onto paper.

04.01.21

the Editor

[Save] or [Ctrl]+[Shift]+[S]
This will save the Block as a normal AMOS Professional program. It is vital that the start and end points of the
Block are perfectly aligned, to avoid including nonsense in the final program.

[Save Ascii] or [Ctrl]+[Shift]+[A]
This option saves the Block as an Ascii file. This allows it to be edited by a commercial text editor.

The [Search] menu provides all of the options that are used to search through program listings, hunting for specific
strings of characters. Once located, these strings can be automatically replaced by alternative characters. Users of the
original AMOS and Easy AMOS systems will find several new features here.

A Search dialogue box is called up by the relevant option, and this is used to type in the string of characters to be
sought. The search string can be up to 32 characters long and can include any combination of characters, words or
instructions.

Normally all searches will be made forwards in pursuit of exact matches of the given characters, but by selecting
various options that are explained below, this can be changed. Apart from menu options, there are two settings
available from the dialogue box, as follows:

[Backward]
If ticked for selection, the search will start from the current cursor position backwards through the program listing.

[Upper Case = Lower Case]
If ticked, this ignores any distinction between upper and lower case letters in the search string.

After the characters have been typed in, and any options selected, the search is launched by pressing the [Return]
key or clicking on the [OK] button.

If the search is successful, the cursor will be positioned over the first character in the target string, otherwise a "Not
found" message is displayed.

Current search preferences are kept, so that next time a search or replace operation is carried out in the programming
session, your selected options will be ready for use.

[Search New] or [Amiga]+[F]
This searches through the program for the first occurrence of the selected string of characters, starting from the
current cursor position.

[Search Next] or [Amiga]+[N]
Use this option to search for the next occurrence of the string, after a [Search New] or [Replace] operation.

04.01.22

the Editor

[Search Previous] or [Amiga]+[B]
This will search backwards through the listing until an example of the target string is found, or the beginning of the
program is reached.

[Replace New]| or [Amiga]+[Shift]+[F]
This replaces any string of characters or any AMOS Professional instruction with your given text. The dialogue box
for this option contains two editing zones:

The target characters that are to be located and then replaced are to be found in the Search string. This will be the
same as any previously called [Search] operation, or a new string can be specified. The Replace string holds the text
that will be substituted in place of the original characters. Click on the appropriate zone using the left mouse button,
or flick between the Search and Replace strings using the [Tab] key.

As well as the [Backward] and [Upper Case = Lower Case] options, two more settings are available when a Replace
operation is chosen.

[All Occurrences]
This automatically replaces every instance of the target string with the new characters. Obviously this can be a
drastic operation, so you will be asked to confirm your wishes before they are obeyed.

[All in Marked Block]
This restricts the Search and Replace operation to all instances of the target characters within the currently
highlighted Block.

Once the strings have been set, a Replace operation is commenced by pressing [Return] or triggering the [OK]
button. After a successful Replace operation, the cursor is positioned immediately after the amended text. If the
search fails, a "Not found" report will be given in the title line.

[Replace next] or [Amiga]+[Shift]+[N]
Use this option to scan the program listing for another example of the search string. If this is successful, the cursor is
placed immediately after the replaced text.

[Replace Previous] or [Amiga]+[Shift]+[B]
This checks backwards through the program listing, and replaces the targeted characters with the replacement string
entered by a [Replace New] option.

The AMOS Professional editor can be totally re-configured, allowing you to tailor it precisely to your own needs
and preferences. All of the keyboard assignments can be changed, all of the system messages may be freely
customised and you can even assign existing menu items directly to your own programs and call them straight from
the screen!

This sort of feature allows you to use sophisticated techniques with the utmost simplicity, making your programming
truly professional.

04.01.23

the Editor

[Show Keys] or [Amiga]+[K]

As a default, all menu options have their equivalent keyboard commands displayed alongside. This option is used to
remove these explanations from the menus. Keyboard short-cuts can still be used as normal, even if the constant
reminders of their settings are removed. A tick mark is added against this item to show that it has been selected.

[Insert Mode] or [F8]
This toggles the Editor between Insert and Overwrite mode, as explained earlier in this Chapter.

[Sounds]
Sound effects may be used by the AMOS Professional Editor, and this option loads a list of audio samples from the
AMOSPro.Samples folder, providing accompanying effects when various options are called up.

To turn these sound effects off, simply click on the [Sound] option again. The creation of your own sound effects is
dealt with in Chapter 8.2.

[Set Key Short-cut]
Most menu items can be assigned to an equivalent combination of control keys. This allows menu commands to be
accessed directly from the keyboard for extra speed.

AMOS Professional is equipped with its own pre-defined set of keyboard options, but these can be changed from
the Editor at any time. Experienced AMOS programmers and users of commercial word processing packages may
want to change the AMOS Professional layout to something more familiar, and any new definitions can be saved as
part of the configuration file.

This means that your favourite keyboard settings will be available automatically, every time you begin a
programming session.

Setting a keyboard short-cut is extremely simple. Here is the procedure:

« Call the [Set Key Short-cut] option from the [Config] menu.

« Select any target menu option. This can be any option except accessory items that are assigned to the [AMOS]
Main menu heading.

« Enter your keyboard short-cut directly from the keyboard. This can comprise a single key press, as well as
any combination of the [Shift], [Ctrl], [Alt], [Amiga], [Function] or [Cursor Arrow] keys.

Remember that AMOS Professional uses the scancode of keys, and not their Ascii values. This means that the keys
in the numeric' keypad can be assigned different functions from the standard number keys. If a selected combination
of keys is already in use, you will be asked to confirm your choice before proceeding. A response of [YES] will
erase the original short-cut, and replace it with your new setting.

Obviously, if these settings are played with casually, the resulting confusion may be difficult to rectify. If this
happens, reload the AMOS Professional standard settings from the "AMOSPro.Configuration.Backup" file located
within the "Extra_Configs" folder on the "AMOSPro_System" disc.

04.01.24

the Editor

[Set Program to menul]

Ths option allows any menu option to be replaced with a simple call to an AMOS Professional program. This can
be loaded from disc automatically, and executed every time the appropriate menu option is called. Alternatively, the
program can be permanently installed in memory, ready for instant use.

If the program has been defined as an Editor Accessory with the SET ACCESSORY instruction, it will even be able
to call up a program listing directly, and display the results on the Editor screen. This means that the Editor can be
extended as much as you like! Please see Chapter 13.1 for a complete explanation of this superb feature.

Here is the procedure for replacing a menu option with a program:

« Call [Set Program to Menu] from the [Config] main menu heading.

« After the prompt, select the menu item that you want to redefine, which can be any option other than the
Accessory list in the [AMOS] menu.

« A standard File Selector will now appear, and is used to enter the program that is to be assigned to the menu
option.

« Finally, enter your selection of run options from the following items in the dialogue box which appears:

[Command Line:]

This holds some text that will be available from the COMMAND LINES$ function when the program is run. If this is
left blank, AMOS Professional will grab all of the characters to the right of the Editor cursor into the COMMAND
LINES string. This provides a simple way of creating your own "Help" routines.

The program can be loaded in one of two ways:

[Load As Accessory]
This will load the program as an accessory, which will not be available from the [AMOS] main menu heading, but
will be hidden away in memory.

[Load in current window]
This saves the current program onto disc, and replaces it with the new menu routine.

[Keep After Run]
After the program has been run, there are two alternative choices as to what can happen:

[Un-ticked]
If the program was loaded as an accessory, it will be removed from memory. If it was entered via the current
window, it will be erased and the previous program will be re-loaded automatically.

[Ticked]
The program will remain permanently in memory after it has been run. It will be stored as an accessory or directly
in the current window, depending on the option that has been selected.

04.01.25

the Editor

[Quit Options]
This menu controls what happens when you choose to quit the Editor. A large dialogue box is displayed, offering
these possibilities:

[Confirm Quit]
If this option is ticked, AMOS Professional will always ask for confirmation before allowing you to quit.

[Save Configuration]
If the Editor configuration has been changed during the current editing session, these changes will be saved directly
into the "AMOSPro.Configuration" file in the APSystem folder, before quitting.

[Save Macros]
This forces any new Macro definitions to be saved onto disc whenever AMOS Professional is quit.

[Auto-resume]

If this option is selected, all programs in memory will be stored on disc automatically, before allowing you to leave
AMOS Professional. The next time AMOS Professional is loaded, it will be restored to the exact state in which it
was left. This important facility allows the AMOS Professional programmer to re-commence work at the exact point
and in the exact state of the last working session!

[Autosave]
The Autosave feature provides a regular prompt to remind you that all listings are to be saved to disc. A dialogue
box is displayed at regular intervals for each program in memory.

Selecting the [YES] button saves a program to disc, under its present filename. If [NO] is chosen, the next program
in the list is moved to.

The [Autosave] option offers a choice of the delay interval between each reminder to save your programs, set in
minutes. To turn the reminder system off, simply enter a value of zero.

[Set Editor]
Use this option to reveal the following sub-menu, for setting your own preferences.

[Setup]
The Editor set-up can be changed via the simple dialogue box presented by this option. The AMOS Professional
configuration is fully dealt with in Chapter 13.1.

[Colour Palette]
The On Screen colours can be set to your desired requirements when you click on this menu item.

04.01.26

the Editor

[Menu Messages]
This option allows you to change the default text of the menu messages to your own wording, or into a non-English
language. Menus are explained in Chapter 6.5, and the menu editor is examined in Chapter 13.3.

[Dialog messages]|

Similarly, the wording of the AMOS Professional dialogue boxes can be changed. The whole of Section 9 of this
User Guide is devoted to dialogue boxes, buttons and icons, and Chapter 13.7 explains how to create your own
resources.

[Test-Time Messages]
The information messages and error messages that appear when a program is tested can also be changed. A full list
of these messages is contained in Chapter 12.3.

[Run-Time Messages]|
Similarly, the messages that are called up when a program is run may be changed to your own wording. These are
also listed in Chapter 12.3.

[Load Configuration]
When this option is selected, a named configuration file is loaded, which holds all of your options for Editor
settings.

[Load Default Configuration]
This option loads a file named AMOSPro.Configuration from the APSystem folder, and the Editor is returned to its
pre-set default settings.

[Save Default Configuration]
Use this option to save your own current settings as the default settings, into the default AMOSPro.Configuration
file. These settings will then be presented whenever AMOS Professional is run.

[Save Configuration]
this item is used to save the current configuration, ready to be loaded with [Load Configuration].

[Set Interpreter]
Selecting this option will call up a special AMOS written Accessory which allows you to define many special
features of the AMOS Professional Interpreter. See Chapter 13.1 for further details.

User

The [User] Main Menu heading presents the options that are used to create your own menu entries in the AMOS
Professional Editor. These entries can be assigned to any AMOS Professional program, and the selected program
will be loaded and run whenever the assigned option is selected. Please see the SET ACCESSORY command for
details of .how to define Editor Accessories, which can access the current program directly.

04.01.27

the Editor

[Add Option] or [Amiga]+[U]

When this option is selected, a dialogue box appears asking for the name of the new option to be inserted at the first
blank position in this [User] menu. The new name can contain up to 16 letters, and there is a maximum of 20
available options.

After the new name has been typed in, you can assign a program to the new option, using the [Set Program to Menu]
command, which is called automatically during this procedure. The new menu option can now be selected with the
mouse, and the associated program file can be chosen from disc. Finally, the [Set Key Short-cut] feature is
presented, allowing a keyboard equivalent to be selected immediately.

[Delete Option] or [Amiga]+[Shift]+[U]
This removes an option from the [User] menu. After selecting this feature, you will be asked to choose an option to
be deleted, using the mouse.

Chapter 4.2 provides a detailed examination of the AMOS Professional Help system. The [Help] menu offers a list
of topics for which additional help is directly available. Select the item that you need help with, and an instant
explanation will be provided on screen.

[Help] or [Help key]

Use this to call up a quick definition, explanation and syntax example of any AMOS Professional instruction at the
current cursor position. The program cursor should be over the first character of the instruction with which you need
assistance.

[Help Menu]
This calls up the Main Menu of the AMOS Professional Help system, which is detailed in Chapter 4.2.

04.01.28

Help

This Chapter explains how AMOS Professional provides detailed on-screen help, co every aspect of the system and
your programming.

The User Guide is provided to explain all the features of AMOS Professional in detail, and to act as your instructor,
but a large book can never offer the instant help made possible by a computer program. AMOS Professional has
been designed to be as friendly as possible, and it harnesses the power of the Amiga itself to provide you with
interactive Help in your programming.

Calling for Help
Help is available at the touch of a button, whenever you are in edit mode. Simply press the [Help] key, it's as
obvious as that! Alternatively, click on the [H] icon at the top of the Edit Screen.

An additional list of Help options is also revealed by holding down the right mouse button, dragging the mouse
pointer to the [Help] menu, and selecting one of the pre-set headings. To start with, select the [Main Menu] option
from the [Help], menu, or simply press the [Help] key, or click on the [H] icon. In all cases, the Main Menu will
appear in a special Help Window.

The Help Window

Whenever [Help] is summoned, the AMOS Professional Help Window is flicked onto the screen. If it obscures your
listing, it can be repositioned by dragging the title bar up and down. All options are selected via the left mouse
buttons. At the left-hand side of the title bar, there is a [Close] button, to return you to the Edit screen.

On the right-hand side of the bar there are three simple options:

[Prev Page]
Click on this to reveal the previous page that was called during the helping process.

[Main Menu]
This option summons the Help system's Main Menu on screen.

[Print]
When this option is selected, you will be requested to check that your printer is ready to receive the words of
wisdom offered by the Help system. Simply click on [Ok] to obtain a printed copy of the current Help text.

On the right-hand side of the Help window there is a vertical slider bar and a pair of up/down arrows, enabling you
to scroll through the Help text.

The Main Menu
Using the AMOS Professional help system is completely straightforward, extremely simple, and incredibly
powerful!

04.02.01

Help

The Main Menu presents a series of sub menus, as follows:

Main Menu

Using Help Audio

Editor AMOS Interface
Direct Mode Input/Output
Syntax conventions AmigaDos
Basics of AMOS Debugging
Screen control Machine code
Object control Tables

Latest News

Please note that this Menu may not appear exactly as in this User Guide listing, because we may have added more
information since going to print.

If you need assistance with any of these topics, simply select one.

Summoning direct Help during programming is explained later. Please select the [Basics of AMOS] option now, to
reveal a more detailed list of Help topics.

Sub-menus

As soon as an item is triggered by the left mouse button from the Help system Main Menu, a selection of related
topics is revealed. Any of these new headings can now be selected as before. In the case of the [Basics of AMOS]
option that you have just selected, they range from [The Bare Bones] to [Memory Banks]. Please select the [Text]
option that is on your screen now.

As you have probably guessed, all of the AMOS Professional features relating to [Text] are now displayed on screen.
Please select [Print] for a demonstration of instant Help. Not only will this command be explained in the form of
text on your screen, you will also be invited to click on the highlighted instruction [Print] and be treated to an instant
demonstration program!

There is so much electronic Help on offer, that this User Guide may seem redundant! Please keep reading anyway.

Summoning Help directly

In the early stages of AMOS Professional programming, before you become completely familiar with all the
features, it is all too easy to loose track of the precise format of every command. It can be very frustrating to consult
this User Guide in the middle of programming, and even using the various Help menus may break your
concentration. To make programming as painless as possible, Help can be summoned directly from your program
listings!

To receive instant help on any command directly from the Editor, either type in the instruction that you are not sure

about, or go to an instruction that is already in your program, and position the program cursor over the first letter of
that word. Now press the [Help] key or click on the [H] icon for instant assistance.

04.02.02

Help

Additional help
There is a complete range of additional help features available to the AMOS Professional programmer. Here is a
brief introduction to each of them.

Error Messages

If AMOS Professional encounters any problems with your listings, a wide range of helpful messages is available to
pinpoint the error. These error messages appear in the Information Line Hear the top of the Edit Screen, and they
fall into three main categories. Editing messages can appear while you are in the process of editing your programs,
such as "Line too long". Program messages like "FOR without matching NEXT" may be displayed when you [Test]
your work, a lid the program cursor will try to pinpoint where the problem is lurking in your listings. Run-time
messages come complete with their own number code, and they spotlight errors encountered while your program is
up and running.

A full list of these error messages can be found in Chapter 12.3, along with an explanation of what they mean, and
how to deal with the problem. Errors can usually be "trapped", and Chapter 12.2 is devoted to this sport.

The AMOS Professional Monitor

This feature is used to get inside your programs, examine any AMOS professional routine, discover exactly what is
happening, why it is happening and make a full report on screen. The Monitor not only offers help, it provides an
instant diagnosis! All is explained in Chapter 12.1.

Continuing Support

It has always been our policy to provide as much help and support to AMOS users as possible,and AMOS
Professional programmers are offered this assistance too. Future Support is dealt with in Appendix I, at the back of
this User Guide, and you may well want to join the network of world-wide clubs and groups offering a huge range
of help and support to AMOS Professional programmers. The services of the AMOS PD Library are detailed in
Appendix H.

04.02.03

the Bare Bones

Ths Chapter provides you with the bare bones that support AMOS Professional programming. These bones are used
to build program skeletons, and you need to understand what they do and how they work before adding the life-
blood, the muscle-power and the brain-control that endow a program with its own life.

If you are an experienced programmer, you will already be familiar with these bare bones, and you can safely skip
through most of this Chapter.

AMOS Professional is designed to provide you with the easiest and most convenient way of controlling all your
programming needs, and even though it provides very powerful programming features, difficult concepts and terms
are avoided wherever possible. This section begins with one of the simplest concepts in computing, known as
"strings".

Strings

A "string" is a number of characters strung together. A set of quotation marks is placed at either end of the string to
hold it together and keep it separate from the rest of the program. Each string is also identified by its own name, so
that it can be called up by that name, and used elsewhere in the program. The "dollar" character $ is attached to the
end of every string name, to mark the fact that this name refers to a string. On UK Keyboards, quote marks are
typed in by pressing the [Shift] and [2] keys together, and the $ character is typed with [Shift] plus [4].

Characters in a string can be letters, numbers, symbols or spaces. The following example creates a simple string
named A$, and it is defined by letting the name of the string equal the characters enclosed in quotes, like this:

E> "AMOS Professional"
Print AS

Here is another example, using three different strings:

E> AS$S="AMOS"
B$=" "
C$="Professional"
Print AS+BS+CS$S

Strings are extremely useful, and they can act on their own or work together, as that last example demonstrated. Try
the next example now:

E> AS$="AMOS PROFESSIONAL"-"S"
Print AS

The whole of Chapter 5.2 is devoted to how AMOS Professional makes use of strings.

Variables
There are certain elements of a computer program that are set aside to store the results of calculations. The names of
these storage locations are known as "variables".

05.01.01

the Bare Bones

Think of a variable as the name of a place where a value resides, and that the value can change as the result of a
calculation made by your computer. Like strings, variables are given their own names, and once a name has been
chosen it can be given a value, like this:

E> SCORE=100
Print SCORE

That example creates a variable with the name of SCORE, and loads it with a value of 100.

Naming variables
The rules for the naming of variables are very simple. Firstly, all variable names must begin with a letter, so the
following variable name is fine:

E> AMOS2=1
Print AMOS2

But the next name is not allowed:

X> 2AMOS=1

Secondly, you cannot begin a variable name with the letters that make up one of the AMOS Professional command
words, because this would confuse your Amiga. The following variable name is acceptable, because the first letters
are not used by one of the AMOS Professional commands:

E> FOOTPRINT=1
Print FOOTPRINT

But the next name is unacceptable, because the computer recognises the first five letters as the command PRINT:
X> PRINTFOOT=1

If you try and type in an illegal variable name, AMOS Professional will spot the mistake, and point it out by splitting
the illegal characters away from the rest of the name. A full list of the command words can be found in the
Command Index, in Appendix H of this User Guide.

Variable names can be as short as one character, and as long as 255 characters, but they can never contain a blank
space. So the next name is allowed:

E> AMOSPRO=1
Print AMOSPRO

But this is an illegal variable name:

X> AMOS PRO=1

05.01.02

the Bare Bones

To introduce a name, or split it up, use the "underscore" character instead of spaces, by typing [Shift] and [-]
together. For example:

E> IAM A LONG LEGAL VARIABLE NAME=1
Print IAM A LONG_LEGAL VARIABLE NAME

Types of variables
There are three types of variable that can be used in AMOS Professional programs.

Whole Numbers
The first of these types is where the variable represents a whole number, like 1 or 9999. These variables are perfect
for holding the sort of values used in computer games, for example:

E> HI SCORE=1000000
Print HI SCORE

Whole numbers are called "integers", and integer variables can range from -147,483,648 up to 147,483,648.

Real number variables

Variables can also represent fractional values, such as 1.2 or 99.99 and the results from this sort of variable can be
extremely accurate. The accuracy of numbers either side of a decimal point (known as "floating point" numbers) is
fully explained in Chapter 5.3.

Real number variables must always have a "hash" symbol added to the end of their names, which is typed by
pressing the tit] key. For example:

E> REAL NUMBER#=3.14
Print REAL NUMBER#

String variables

This type of variable holds text characters, and the length of the text can be anything from zero up to 65,500
characters long. String variables are enclosed in quotation marks, and are also distinguished from number variables
by a $ character on the end of their names, to tell AMOS Professional that they will contain text rather than
numbers. For example:

E> NAMES="Name"
GUITARS="Twang"
Print NAMES, GUITARS

Storing variables

All variables are stored in an 8k memory area called a "buffer". This area can hold about 2000 numbers or two
pages of normal text, and it has been set as small as possible to allow more space for memory banks and screens of
graphics. When there is not enough room left to store all of the variables in a program, an error message will appear
saying "Out of variable space". The size of the storage space for variables can be increased at any time, and the only
limit to the size of arrays and string variables is the amount of memory available in your computer.

05.01.03

the Bare Bones

SET BUFFER
instruction: set the size of the variable area
Set Buffer number of kilobytes

The SET BUFFER command can be used inside a program to set the new size of the variable area. Simply follow
the command with the number of kilobytes required, and you are recommended to increase this value by 5k at a
time, until enough space has been reserved in the buffer area. It is important to note that the SET BUFFER
command must be the very first instruction in your program, apart from any REM messages.

Arrays
It is often necessary to use a whole set of similar variables for something like a table of football results or a
catalogue for a record collection. Any set of variables can be grouped together in what is known as an "array".

Supposing you have 100 titles in your record collection, and you need to tell AMOS Professional the size of the
table of variables needed for your array. There is a special command for setting up this dimension.

DIM
instruction: dimension an array
Dim variable name(number,number,number...)

The DIM command is used to dimension an array, and the variables in your record collection table could be set up
with a first line like this:

E> Dim ARTISTS (99),TITLES (99),YEAR(99),PRICE# (99)

Each dimension in the table is held inside round brackets, and if there is more than one element in a dimension each
number must be separated from the next by a comma.

Element numbers in arrays always start from zero, so your first and last entries might contain these variables:

E> ARTISTS (0)="RAaron Copeland"
TITLES$ (0)="Appalachian Spring"
YEAR (0)=1944
PRICE# (0)=12.99
ARTISTS (99)="77 Top"

TITLES (99) —"Afterburner"
YEAR (99)=1985
PRICE# (99)=9.95

To extract elements from your array, you could then add something like this to your example program:

05.01.04

the Bare Bones

E> Print TITLES (0), PRICE#

) (0)
Print TITLES$ (99),YEAR(99

) , PRICE# (99)

These tables can have as many dimensions as you like, and each dimension can have up to 65,0(K) elements. Here
are some more modest examples:

X> Dim LIST(5),NUMBER# (5,5,5),WORDS (5, 5)

Constants
Constants are a special type of number or string that can be assigned to a variable, or used in a calculation. They are
given this name because their value remains constant, and does not change during the course of the program.

AMOS Professional will normally treat all constants that are fractional numbers (floating point numbers) as whole
numbers (integers), and convert them automatically, before they are used. For example:

E> A=3.141
Print A

Any numbers that are typed into an AMOS Professional program are converted into a special format. When
programs are listed, these numbers are converted back to their original form, and this can lead to minor
discrepancies between the number that was originally typed in and the number that is displayed in the listing. There
is no need to worry about this, because the value of the number always remains exactly the same.

Functions
There is a whole set of bare bones in the AMOS Professional skeleton known as "functions". These are command
words that have one thing in common: they all work with numbers in order to give a result.

FREE
function: give the amount of free memory in the variable buffer area
memory=Free

For an example of a function in operation, the FREE function checks how many "bytes" of memory are currently
available to hold your variables, and it can be used to make a report, like this:

E> Print "The number of bytes available is:";Free

Now use the FREE function with the SET BUFFER command (which is explained earlier in this Chapter) as
follows:

E> Set Buffer 13
Print "The number of bytes now available is:";Free

05.01.05

the Bare Bones

AMOS Professional provides over 200 ready-made functions, but it allows you to create as many different functions
as you like! These "user-defined" functions are set up inside your own programs, and they can be used to compute
commonly used values very quickly and very simply.

DEF FN
structure: create a user-defined function
Def Fn name (list of variables)=expression

To create a user-defined function, give it a name and follow the name with a list of variables. These variables must
be held inside a pair of round brackets, and separated from one another by commas, like these examples:

X> Def Fn NAMES (AS)=LOWERS (AS)
Def Fn X(A,B,C)=A*B*C

When a user-defined function is called up my variables that are entered with it will be substituted in the appropriate
positions, as demonstrated below.

FN
structure: call a user-defined function
Fn name(list of variables)

The following examples show how DEF FN is first used to define a function, and how FN calls it up:

E> Def Fn NAMES (AS,X,Y)=Mid$ (AS,X,Y)
Print Fn NAMES ("Professional", 4, 3)

E> Def Fn X(A,B,C)=A+B+C
Print Fn X(1,10,100)

The expression that equals the user-defined function can include any of the standard AMOS Professional functions,
and it is limited to a single line of a program.

Parameters
The values that are entered into an AMOS Professional instruction are known as "parameters". If there is more than
one parameter, each parameter must be separated from its neighbour by a comma.

For example, up to three parameters can be used after an INK command, in the form of various numbers which
specify which colour is to be used for drawing operations, then the background colour, and the third parameter
setting a border colour. So an INK command could appear like this, with its three parameters ready to draw a shape:

E> Ink 0,1,2
Bar 10,10 To 100,50

05.01.06

the Bare Bones

Any parameter can be left out, as long as its comma remains in place. When this happens, AMOS professional will
check to see what the current value is, or if there is a default value for this parameter, and automatically assign this
value to the parameter that has been omitted. For example:

E> Ink 0,1,2 : Rem Set drawing, background and border colour

Ink 3,, : Rem Set drawing colour only

Ink ,4, : Rem Set background, leave drawing and border colours alone
Procedures

The more complex the skeleton of a program gets, the easier it is to get lost among all of its routes and connections.
Experienced programmers usually split their programs into small units known as "procedures", which allow one
aspect of the program to be tackled at a time, without getting distracted by everything else that is going on.

AMOS Professional offers all the advantages of using procedures in the most convenient way, and Chapter 5.5 is
dedicated to a full explanation of how to exploit them. You will learn how each procedure module can be given its
own specially defined variables and parameters, and how to take best advantage of them.

Controlling a program skeleton
Once a program is running, there are a number of ways to stop it in its tracks, allowing you to control what happens
next.

WAIT
instruction: wait before performing the next instruction
Wait number of 50ths of a second

The WAIT command tells the computer to stop the program and wait for as long as you want before moving on to
the next instruction. The number that follows it is the waiting time, specified in 50ths of a second.

The following example forces the program to wait for two seconds:

E> Print "I am the first instruction."
Wait 100
Print "I am the next instruction."

END
instruction: end the current program
End

As soon as the END command is recognised, it stops the program. You can either press the [Esc] key to go to Direct
Mode, or use the [Spacebar] to get to the Edit Screen. Try this example now:

E> Print "I am the first instruction."
Wait 150
End
Print "This instruction will never be executed!"

05.01.07

the Bare Bones

STOP
instruction: interrupt the current program

Stop

To stop the current program. The STOP instruction is used like this:

E> Print "Interrupt in two seconds!"

Wait 100

Stop

Print "I have been abandoned"
EDIT
instruction: leave current program and return to Edit Screen
Edit

Similarly, the EDIT instruction forces the program to be abandoned, and returns you straight to the Edit Screen, like
this:

E> Print "Wait four seconds and then EDIT"
Wait 200
Edit
Print "I have been ignored!"

DIRECT
instruction: leave current program and return to Direct Mode
Direct

Use the DIRECT command to jump out of the current program and go straight to Direct Mode for testing out a
programming idea.

E> Print "Take me to Direct Mode immediately"
Direct

Normally, a program can be interrupted by pressing the [Ctrl] and the [C] keys together, returning you to the AMOS
Professional Edit Screen. This facility can be turned off and on at will, creating a crude sort of program protection.

BREAK OFF

BREAK ON

instructions: toggle the program break keys off and on
Break Off

Break On

The BREAK OFF command can be included in a program to stop a particular routine from being interrupted while
it is running. To re-start the interrupt feature, use BREAK ON. But be warned!

05.01.08

the Bare Bones

Never run a program that is still being edited with BREAK OFF activated, or you will lose your work. Make a
back-up copy first. Here are two examples, and if you insist on ignoring this advice, you may be foolhardy enough
to try the second one!

E> Break Off
Print "Try and press the Break keys now"
Wait 500
Break On
Print "Break keys activated"
Wait 100
Direct

E> Break Off
Do
Print "Get out of that!"
Wait Key
Loop

SYSTEM
instruction: go to Workbench
System

To close AMOS Professional altogether, and go to the Workbench, the System command can be given from within
a program, or from the Editor. The Direct Mode pre-set icon, is explained in Chapter 4.1, or simply press
[Shift]+[F10].

D> Print "Au revoir AMOS"
System

Separating commands in a line

So far in this Chapter, individual instructions have been separated from one another by typing them in and pressing
the [Return] key to enter them on a new line of the program. In fact, the AMOS Professional programmer will often
want to place groups of related commands together on the same line of the program. This is achieved by separating
your instructions with a colon character.

AMOS Professional makes typing in instructions as simple as possible, and you will not normally have to worry
about typing in correct spacings, as long as you stick to the rules. When a colon is used to split up commands,
command words are recognised and given a capital letter and a space automatically.

This can be proved by typing in the next example exactly as it appears below, and hitting the Return] key:

E> Print"I'm so":wait key:print"neat!"

05.01.09

the Bare Bones

Marking the bones of a program

Imagine that the skeleton of your latest programming masterpiece is so clever and so complex that you cannot
remember where everything is or what anything is supposed to do! There is a simple and effective way of marking
any part of an AMOS Professional program, by inserting typed messages to remind yourself exactly what this
section of program is for. These little comments or messages are known as "Rem statements".

REM

Structure: insert a reminder message into a program
Rem Typed in statement

' Typed in statement

The beginning of a Rem statement is marked by REM or by the apostrophe character, which is simply a short-cut
recognised by AMOS Professional as a REM. The message or comment is then typed in from the keyboard,
beginning with a capital letter. Here are some examples:

X> 'An apostrophe can be used instead of the characters Rem
Rem The next line will print a greeting
Print "a greeting"
'This line is a comment that does nothing at all
Wait 75: Rem Wait one and a half seconds
'Return to the Edit Screen
Edit

These reminders are for human intelligence only, and when a Rem statement is encountered in a program, it is
completely ignored by the computer.

Rem statements can occupy their own line, or be placed at the end of a line of the program, as long as they are
separated from the last instruction by a colon. But the apostrophe character can only be used to mark a Rem
statement at the beginning of a line. The first of the next two lines is fine, but the second will create an error:

X> Print "This example is fine" : Rem Fine example
Print "Wrong!"™ : ' This is illegal

05.01.10

String Functions

In this Chapter, you will learn how to handle strings. AMOS Professional Basic has a full range of string
manipulation instructions, and experienced Basic programmers should already be familiar with the standard syntax
used.

Reading characters in a string

LEFTS

function: return the leftmost characters of a string
destination$=Left$(source$,number)
Left$(destination$,number)=source$

LEFTS reads the specified number of characters in a source string, starting from the left-hand side, and copies them
into a destination string. The first type of usage of this function creates a new destination string from the chosen
number of characters of the source string. For example:

E> Do
Input "Type in a string:";S$
Print "Display how many characters from"
Input "the left?";N
Print Left$(S$,N)
Loop

The second type of usage replaces the leftmost number of characters in the destination string with the equivalent
number of characters from the source string. For example:

E> AS="**** Basic"
Left$ (AS, 4)="AMOS"
Print AS

Exactly the same processes can be performed with characters from the right-hand side of a string, by using the
equivalent RIGHTS function.

RIGHTS

function: return the rightmost characters of a string
destination$=Right$(source$,number)
Right$(destination$,number)=source$

Here are two examples demonstrating each version of usage:

E> Print Right$ ("IGNORED54321",5)
A$=Right$("REJECTED0123456789",10)
Print AS

E> BS="AMOS ***kkkkkkkkkN
Right$(B$,12)="Professsional”
Print B$

05.02.01

String Functions

MIDS$

function: return a number of characters from the middle of a string
destination$=Mid$(source$,offset,number)
Mid$(destination$,offset,number)=source$

Similarly, the MID$ function returns characters from the middle of a string, with the first number specified in
brackets setting the offset from the start of the string and the second number setting how many characters are to be
fetched. If the number of characters to be fetched is omitted from your instruction, then the characters will be read
right up to the end of the string being examined. Here are some examples:

E> Print Mid$ ("AMOS Professional", 6)
Print Mid$ ("AMOS Professional", 6,4)

E> AS$="AMOS Professional **x"
Mid$ (AS,19)="Basic"
Print AS
Mid$ (AS, 19, 3)="Mag"
Print AS

Finding characters in a string

It is often necessary to search through a mass of data for a particular reference, in other words, to search through
strings for individual characters or sub-strings. Similarly, you may wish to write an adventure game where lines of
text must be broken down into individual commands.

INSTR

function: search for occurrences of one string within another string
x=Instr(host$,guest$)

x=Instr(host$,guest$,start of search position)

INSTR allows you to search for all instances of one string inside another. In the following examples, the "host"
strings are searched for the first occurrence of the "guest" strings you are seeking. If the relevant string is found, its
location will be reported in the form of the number of characters from the left-hand side of the host string. If the
search is unsuccessful, a result of zero will be given.

E> Print Instr ("AMOS Professional","AMOS")
Print Instr ("AMOS Professional","O")
Print Instr ("AMOS Professional","o")
Print Instr ("AMOS Professional","Provisional")

E> Do
Input "Type in a host string:";HS
Input "Type in a guest string to be found:";G$
X=Instr (HS, G$)
If X=0 Then Print G$;" Not found"

05.02.02

String Functions

If X<>0 Then Print G$;" Found at position ";X
Loop

Normally, the search will begin from the first character at the extreme left-hand side of the host string, but you may
begin searching from any position by specifying an optional number of characters from the beginning of the host
string. The optional start-of-search position can range from zero to the maximum number of characters in the host
string to be searched. For example:

E> Print Instr ("AMOS PROFESSIONAL","O",O0)
Print Instr ("AMOS PROFESSIONAL","O",4)

Converting strings

UPPERS
function: convert a string of text to upper case
new$=Upper$(old$)

This function converts the characters in a string into upper case (capital) letters, and places the result into a new
string. For example:

D> Print Upper$ ("aMoS pRoFeSsIoNaL")

LOWERS
function: convert a string of text to lower case
new$=Lower$(old$)

This works in the same way as UPPERS, but translates all the characters in a string into nothing but lower case
(small) letters. These sorts of text conversions are particularly useful for interpreting user-input in interactive data
programs and adventure games, because input can be converted into a standard format which is understood by your
programs. For example:

E> Input "Do you want to continue? (Yes or No)";ANSWERS
ANSWERS=Lower$ (ANSWERS) : If ANSWERS="no" Then Edit
Print "OK. Continuing with your program"

STRS
function: convert a number into a string
s$=Str$(number)

Str$ converts a real number variable into a string. This can be used to overcome limitations posed by functions like
CENTRE, which does not accept numbers as parameters, but will work happily with parameters in the form of
strings. Here is an example:

E> Centre "Remaining memory is"+Str$ (Chip Free)+" Bytes"

VAL

function: convert a string of digits into a number
v=Val(x$)

vi#=Val(x$)

05.02.03

String Functions

To perform the reverse task to STRS, the VAL function converts a list of decimal digits stored in a string, changing
them into a number. If this process fails for any reason, a value of zero will be returned. For example:

D> X=Val ("1234") : Print X

STRINGS

function: create a new string from an existing string
new$=String$(existing$, number)

Do not confuse this with STRS$, which converts numbers into a string. The STRINGS$ function creates a new string
filled with the required number of copies of the first character from an existing string. For instance, the following
example produces a new string containing ten copies of the character "A".

E> Print String$ ("AMOS Professional is a joy forever",10)

Manipulating strings
Sometimes you may want to handle your strings for special purposes. For example, if you wish to pad out a piece of
text before it gets printed onto the screen, you will need an accurate method of creating spaces in the string.

SPACES
function: space out a string
s$=Space$(number of spaces)

Try the following example:
E> Print "Ten";Space$ (10);"spaces"

FLIPS$

function: invert a string
inverted$=Flip$(original$)

This function simply reverses the order of the characters held in an existing string. For example:
D> Print Flip$ ("SOMA gnippilf")

REPEATS
function: repeat a string
r$=Repeat$(text$,number)

To repeat the same string of characters using a single PRINT statement, follow your string of text with the number

of times you want the repetition. Allowable values are between 1 and 127. Whenever the string is printed, a
sequence of control characters is automatically added to the r$ variable, in the following format:

05.02.04

String Functions

Chr$ (27)+"RO"+AS+Chr$ (27)+"R"+Chr$ (48+n)

Getting information about strings
The next three functions are provided to discover particular properties of strings.

CHRS
function: return the character with a given ASCII code
s$=Chr$(code number)

The CHRS function creates a string that contains a single character generated by a given ASCII code number. Note
that only the characters with ASCII code numbers 32 to 255 are printable on the screen. Others are used internally as
control codes. Match characters with their codes using this routine:

E> For S=32 To 255: Print Chr$(S); : Next S

ASC
function: Give the ASCII code of a character
code=Asc(a$)

To get the internal ASCII code of the first character in a string, use the ASC function like this:

E> Print Asc("B")
Print Asc ("AMOS Professional")

LEN
function: give the length of a string
length=Len(a$)

The LEN function returns the number of characters stored in a string. For example:
D> Print Len("0123456789")

Array operations
To end this Chapter, here are a pair of useful instructions for manipulating arrays.

SORT

instruction: sort all elements in an array
Sort a(0)

Sort a#(0)

Sort a$(0)

The SORT instruction arranges the contents of any array into ascending order, and the array may contain integers,
floating point numbers or strings.

05.02.05

String Functions

The starting point of your table is specified by the a$(0) parameter, and it must always be set to the first item in the
array, which is item number zero. For example:

E> N=5 : P=0
Dim A (N)
Print "Type in ";N," numbers, or enter 0"
Print "to stop entry and begin sort"
Repeat
Input A (P)
If A(P)=0
Dec P
Exit
End If
If P=N-1 Then Exit
Inc P
Until False
Sort A(0)
For X=N-P To N
Print A (X)
Next X

MATCH

function: search an array for a value
x=Match(array(0),value)
x=Match(array#(0),value#)
x=Match(array$(0),value$)

MATCH searches through an array that has already gone through the SORT process, looking for a given value. If
the value is found then x is loaded with the relevant index number. However, if the search is not successful the result
will be negative. If you take the absolute value of this result, the item which came closest to your original search
parameter is provided. Only arrays with a single dimension can be checked in this way, and they must already be
sorted before MATCH can be called.

For example:

E> Read N : Dim DS (N)

For X=0 To N-1 : Read D$(X) : Next X

Sort D$(0)

Do
REINPUT:
Input AS
If AS$S=" "Then End
If AS$="print all data"

For X=1 To N: Print D$(X) : Next X: Goto REINPUT

End If

05.02.06

String Functions

POS=Match (DS (0) ,AS)
If POS<-N-1
If POS>-10

Print "Not found. Nearest to

";DS$ (1) : Goto JMP
Else
Print "Not found. Nearest to ";D$ (N) Goto JMP
End if
End If
If POS>0 Then Print "Found ",DS(POS);" in record ";POS
If POS<O0 Then Inc POS : Print "Not found. Nearest to ":DS (Abs (P0OS))
JMP :
Loop
Data 8, "Mercury","Venus","Earth", "Mars", "Saturn", "Jupiter", "Neptune", "Tharg"

Test that example out by entering various inputs, including the names of planets, single characters in upper and

lower case and "print all data". Obviously MATCH can be used with the INSTR function to set up a powerful parser
routine, for interpreting user input in an adventure game.

05.02.07

Maths

This Chapter provides a full explanation of using standard mathematical and trigonometric functions, as well an
insight into how AMOS Professional exploits numbers.

Arithmetical calculations
Nothing could be simpler than asking AMOS Professional to run this sum:

D> Print 2+2

Arithmetical operations are straightforward, provided the correct symbols are used, as follows:
+ the plus sign always signals addition

- the minus sign is used for subtraction

* for multiplication, an asterisk character must be used

/ divisions are made using the forward-slash symbol

~ the circumflex character is used as the exponential symbol, and it means "raise this number to a given power",
which is exactly the same as multiplying a number with itself.

So the following two lines are interchangable:

D> Print 375
Print 3*3*3*3%*3

The following logical operations can also be used in calculations:

MOD is the "modulo" operator, which acts as a constant multiplier. AND, OR and XOR are the three logical
operations.

Calculation priorities
Arithmetical instructions are taken literally, using a set of built-in priorities. So the following lines give the results 6
and 8 respectively:

D> Print 2+2*2
Print (2+2)*2

AMOS Professional handles a combination of calculations that make up an "expression" in the following strict order
of priority:

« exponential numbers are always calculated first ().

« multiplications and divisions are then calculated in order of appearance, from left to right (*/). Remainders of
divisions will be dealt with by any modulo operations (MOD).

« additions and subtractions are calculated last, again in order, from left to right (+-).

« any logical operations will not be taken into account until after all the above calculations have been completed
(AND, OR, XOR).

Any calculation placed inside a pair of round brackets is evaluated first, and treated as a single number.

05.03.01

Maths

The next calculation gives a result of 43, because it evaluated in the following order:

D> Print 10+2*5-8/4+5"2

572 = 25
2*5 =10
8/4 = 2
10+10 = 20
20-2 = 18
18+25 = 43

By adding two strategic pairs of brackets to the same calculation, the logical interpretation is transformed, resulting
in an answer of 768, like this:

D> Print (10+2)*(5-8/4+5)"2

1042 = 12
5-8/445 = 5-2+5
5-2+5 = 8
872 = 64
12*64 = 768

Fast calculations
There are three instructions that can be used to speedflip the process of simple calculations.

INC
instruction: increment an integer variable by 1
Inc variable

This command adds 1 to an integer (whole number) variable, using a single instruction to perform the expression
variable=variable+1 very quickly. For example:

D> V=10 : Inc V : Print V

DEC
instruction: decrement an integer variable by 1
Dec variable

Similarly to INC, the DEC command performs a rapid subtraction of 1 from an integer variable. For example:
D> V=10 : Dec V : Print V

ADD

instruction: perform fast integer addition
Add variable,expression

Add variable,expression,base To top

05.03.02

Maths

The ADD command can be used to add the result of an expression to a whole number variabk. immediately. It is the
equivalent to variable=variable+ expression but performs the addition nearly twice as fast.

There is a more complex version of ADD, which is ideal for handling certain loops much more quickly than the
equivalent separate instructions. When Base number and Top number parameters are included, ADD is the
equivalent to the following lines:

X> V=V+A
If V<BASE Then V=TOP
If V>TOP Then V=BASE

Here is an example:

E> Dim A(10)
For X=0 To 10:A(X)=X:Next X
V=0
Repeat
Add Vv,1,1 To 10
Print A (V)
Until V=11 : Rem This loop is infinite as V is always <11

Relative values

It is obvious that every expression has a value, but expressions are not restricted to whole numbers (integers), or any
sort of numbers. Expressions can be created from real numbers or strings of characters. If you need to compare two
expressions, the following functions are provided to examine them and establish their relative values.

MAX

function: return the maximum of two values
value=Max(a,b)

value#=Max (a#,b#)

value$=Max(a$,b$)

MAX compares two expressions and returns the largest. Different types of expressions cannot be compared in one
instruction, so they must not be mixed.

Here are some examples:

D> Print Max(99,1)
Print Max ("AMOS Professional", "AMOS")

MIN

function: return the minimum of two values
value=Min(a,b)

value#=Min(a#,b#)

value$=Min(a$,b$)

05.03.03

Maths

Similarly, the MIN function returns the smaller value of two expressions. Expressions can consist of strings, integers
or real numbers, but only compare like with like, as follows:

D> A=Min(99,1) : Print A
Print Min ("AMOS Professional", "AMOS")

Values and signs
Any number can have one of three values: negative, positive or zero, and these are represented by the "sign" of a
number.

SGN

function: return the sign of a number
sign=Sgn(value)

sign=Sgn(value#)

The SGN function returns a value representing the sign of a number. The three possible results are these:

-1 if the value is negative
1 if the wvalue is positive
0 if the value is =zero

ABS

function: return an absolute value
a=Abs(value)

a=Abs(value#)

This function is used to convert arguments into a positive number. ABS returns an absolute value of an integer or
fractional number, paying no attention to whether that number is positive or negative, in other words, ignoring its
sign.

For example:
D> Print Abs(-1),Abs (1)

Floating point numbers

Numbers that consist of many digits either side of a decimal point can often give very messy results in Basic
programming. The movement of the decimal point slows down the processing, and levels of accuracy may be too
great for your needs.

INT
function: convert floating point number into an integer
integer=Int(number#)

05.03.04

Maths

The INT function rounds down a floating point number to the nearest whole number (integer), so that the result of
the following two example lines is 3 and -2, respectively:

D> Print Int(3.9999)
Print Int(-1.1)

FIX
instruction: fix precision of floating point
Fix(number)

The FIX command changes the way floating point numbers are displayed on screen, or output to a printer. The
precision of these floating point numbers is determined by a number (n) that is specified in brackets, and there can
be four possibilities, as follows:

« If (n) is greater than 0 and less than 16, the number of figures shown after the decimal point will be n.

o If (n) equals 16 then the format is returned to normal.

« If (n) is greater than 16, any trailing zeros will be removed and the display will be proportional.

o If (n) is less than 0, the absolute value ABS(n) will determine the number of digits after the decimal point, and
all floating point numbers will be displayed in exponential format.

Here are some examples:

E> Fix (2) : Print Pi# : Rem Two digits after decimal point
Fix(-4) : Print Pi# : Rem Exponential with four digits after decimal point
Fix(16) : Print Pi# : Rem Revert to normal mode

Single and double precision

Although the standard floating point system is perfect for general use, it may not be accurate enough for genuine
scientific applications, or advanced simulations. AMOS Professional offers a choice of two separate calculation
systems.

Single Precision
This is the default mode, and is automatically used whenever an AMOS Professional program is RUN. Single
precision is accurate to about seven decimal digits, it is very fast and it is ideal for the vast majority of applications.

Double precision

Double precision mode offers double the normal degree of accuracy, and is capable of dealing with extremely
precise values. Unlike most pocket calculators, AMOS Professional double precision can handle numbers with up to
16 significant digits.

This extent of accuracy will consume twice as much memory as the standard version, and it will also cause a great
slowing down of calculations. It should only be used when extra accuracy is absolutely vital.

05.03.05

Maths

SET DOUBLE PRECISION
instruction: engage double precision accuracy
Set Double Precision

Double precision should be set at the start of your program, and all floating point calculations will be performed
using the more accurate mode. Because the two modes are completely separate, single precision and double
precision modes cannot be mixed in the same program.

Standard mathematical functions

SQR

function: calculate square root
square=Sqr(number)
square#=Sqr(number#)

This function calculates the square root of a positive number, that is to say, it returns a number that must be
multiplied by itself to give the specified value. For example:

D> Print Sqr(25)
Print Sqr(11.1111)

EXP
function: calculate exponential
exponential#=Exp(value#)

Use the EXP function to return the exponential of a specified value. For example:
D> Print Exp (1)

LOG

function: return logarithm
a=Log(value)
a#=Log(value#)

LOG returns the logarithm in base 10 (log 10) of the given value. For example:

E> Print Log(10)
A#=Log (100)

LN
function: return natural logarithm
a#=Ln(value#)

05.03.06

Maths

The LN Function calculates the natural logarithm (Naperian logarithm) of the given value. For example:

E> Print Ln(10)
A#=Ln (100) : Print A#

Trigonometry
The AMOS Professional trigonometric functions are often used for calculating angles, creating graphic design
effects, calculating trajectories in gameplay, as well as making intricate musical wave forms.

Pi#
function: return a constant p

pH=Pi#

Pi is the Greek letter it that is used to summon up a number which begins 3.141592653 and on for ever. This number
is the ratio of the circumference of a circle to its diameter, and it is used in trigonometry as the tool for calculating
aspects of circles and spheres. Note that in order to avoid clashes with your own variable names, a # character is part
of the token name. The PI# function gives a constant value of Pi in your calculations.

In the following diagram of a circle, a point is moved from the right hand side of the x-axis up along the perimeter
for a distance a, stopping at position b.

y—axis

COS a
b

a SIN a

Xx—axis X—axis

y—axis

In conventional trigonometry, a circle is divided into 360 degrees, so a defines the number of degrees in the angle
between the x-axis and the line from the centre of the circle to point b. However, your Amiga uses a default by
which it expects all angles to be given in "radians" and not degrees.

05.03.07

Maths

DEGREE
instruction: use degrees
Degree

If, for any reason, you are unhappy with the complexities of radians, AMOS Professional is happy to accept your
trigonometric instructions in degrees. Once the DEGREE command has been activated, all subsequent calls to the
trigonometric functions will expect degrees to be used.

E> Degree
Print Sin(45)

RADIAN
instruction: use radians
Radian

If DEGREE has already been called, the RADIAN function returns to the default status, where all future angles are
expected to be entered in radians.

SIN

function: calculate sine of an angle
s#=Sin(angle)

s#=Sin(angle#)

The SIN function calculates how far point b is above the x-axis, known as the sine of the angle a.
Note that SIN always returns a floating point number. For example:

E> Degree
For X=0 To 319
Y#=Sin (X)
Plot X,Y#*50+100
Next X

COS

function: calculate cosine of an angle
c#=Cos(angle)

c#=Cos(angle#)

In the above diagram, the distance that point b is to the right of the y-axis is known as the cosine. If b goes to the
left of the y-axis, its cosine value becomes negative. (Similarly, if it drops below the x-axis, its sine value is
negative.) The COS function gives the cosine of a given angle.

To demonstrate this, add the following two lines to your last example between the PLOT and NEXT instructions:

E> Y#=Cos (X)
Plot X,Y#*50+100

05.03.08

Maths

TAN

function: calculate tangent of an angle
t#=Tan(angle)

t#=Tan(angle#)

For any angle, the tangent is the result of when its sine is divided by its cosine. The TAN function generates the
tangent of a given angle. For example:

E> Degree : Print Tan(45)
Radian : Print Tan (Pi#/8)

ACOS
function: calculate arc cosine
a#=Acos(number#)

The ACOS function takes a number between -1 and +1, and calculates the angle which would be needed to generate
this value with COS. For example:

E> A#=Cos (45)
Print Acos (A#)

ASIN
function: calculate arc sine
a#=Asin(number#)

Similarly to ACOS, the ASIN function calculates the angle needed to generate a value with SIN.

ATAN
function: calculate arc tangent
a#=Atan(number#)

ATAN returns the arctan of a given number, like this:

E> Degree : Print Tan (2
(

)
Degree : Print Atan(0.03492082)

A hyperbola is a conical section, formed by a plane that cuts both bases of a cone. In other words, an asymmetrical
curve. Wave forms and trajectories are much more likely to follow this sort of eccentric curve, than perfect arcs of
circles. The hyperbolic functions express the relationship between various distances of a point on the hyperbolic
curve and the coordinate axes.

HSIN

function: calculate hyperbolic sine
h#=Hsin(angle)

h#=Hsin (angle#)

05.03.09

Maths

The HSIN function calculates the hyperbolic sine of a given angle.

HCOS

function: calculate hyperbolic cosine
h#=Hcos(angle)

h#=Hcos(angle#)

Use this function to find the hyperbolic cosine of an angle.

HTAN

function: calculate hyperbolic tangent
h#=Htan(angle)

h#=Htan(angle#)

HTAN returns the hyperbolic tangent of the given angle.

Random numbers

The easiest way to introduce an element of chance or surprise into a program is to throw some numbered options
into an electronic pot and allow AMOS Professional to pull one out at random. After a number has been selected
and used, it is thrown back into the pot once again. It then has the same chance as any other number offered for
selection, when the next random choice is made.

RND
function: generate a random number
value=Rnd(number)

The RND function generates integers at random, between zero and any number specified in brackets. If your
specified number is greater than zero, random numbers will be generated up to that maximum number. However, if
you specify 0, then RND will return the last random value it generated. This is useful for debugging programs. Here
is an example:

E> Do
C=Rnd (15) : X=Rnd(320) : Y=Rnd(200)
Ink C : Text X,Y,"AMOS Professional at RANDOM"
Loop
RANDOMIZE

instruction: set the seed for a random number
Randomize seed

In practice, the numbers produced by the RND function are not genuinely random at all. They are computed by an
internal mathematical formula, whose starting point is taken from a number known as a "seed". This seed is set to a
standard value whenever AMOS Professional is loaded into your Amiga, and that means that the sequence of
numbers generated by the RND function will be exactly the same each time your program is run.

05.03.10

Maths

This may well be acceptable for arcade games, where pre-set random patterns generated by RND can be used to
advantage, but it is a useless system for more serious applications.

The RANDOMIZE command solves this problem by setting the value of the seed directly. This seed can be any
value you choose, and each seed will generate an individual sequence of numbers. RANDOMIZE can also be used
in conjunction with the TIMER variable, to generate genuine random numbers.

TIMER

reserved variable: count in 50ths of a second
v=Timer

Timer=v

The TIMER reserved variable is incremented by 1 unit every 50th of a second, in other words, it returns the amount
of time that has elapsed since your Amiga was last switched on. As explained above, this makes it a perfect "seed"
to be used with the RANDOMIZE function, as follows:

X> Randomize Timer

The best place to use this technique is immediately after the user has entered some data into the computer. Even a
simple key-press to start a game will work perfectly, and generate truly random numbers.

05.03.11

Control Structures

There is a traditional group of instructions that allow computer programs to make decisions. They are usually known
as control structures. This Chapter explains how AMOS Professional takes (lie best of these traditions and uses them
to give your Amiga a logical brain.

GOTO

structure: jump to a specified place in the program
Goto label

Goto line number

Goto expression

A computer program that can only obey a list of instructions one after the other is a very limited computer program
indeed. One way of forcing programs to jump to specified locations is to use the old fashioned GOTO structure,
followed by a target destination. In AMOS Professional, these destinations can be a label, a line number or a
variable. These are explained in Chapter 5.1.

label markers can consist of names that use any string of letters or numbers, as -well as the underscore character

nn n.n

", and they must be ended with the colon character ":" as follows:

E> Print "Jump in two seconds"™ : Wait 100
Goto LABEL MARKER
Wait 180000 : Rem Wait one hour
LABEL MARKER:
Print "Now is the time to jump!"

Numbers may be used to identify specific lines, and the program can be commanded to GOTO one of these
optional markers, like this:

E> Goto 5
Print "I am being ignored"
5 Print "I am line 5"

It should be obvious that these identification numbers have nothing to do with the number of lines in a program, but
they may still lead to confusion. Labels are much easier to remember and to locate.

Expressions can also be used for this purpose, and the expression may be any string or integer. Strings hold the
name of a label, and integers return a line identification number. Here is an example:

E> BEGIN:
Goto "BED"+"2"
End
BED1:
Print "This Bed will never be used"
Bed2:
Print "Welcome to Bed Two!"
Wait 20
Goto BEGIN

05.04.01

Control Structures

GOSUB

structure: jump to a sub-routine
Gosub label

Gosub number

Gosub expression

Packages of program instructions that perform a specific task can be thought of as "routines". When such routines
are split into smaller packages of instructions, they can be thought of as "sub-routines". GOSUB is another
antiquated command, and is used to perform a jump to a sub-routine. In fact, GOSUB is made redundant by the
AMOS Professional procedure system, but it can be useful for STOS users who want to convert programs.

As with GOTO, there are three alternative targets for a GOSUB instruction: labels, line numbers or expressions.

To make sub-routines easier to spot in your program listings, it is good practice to place them at the end of the main
program. A statement such as EDIT or DIRECT should also be used to end the main program, which prevents
AMOS Professional from executing any GOSUBs after the main program has finished.

RETURN
instruction: return from a sub-routine called by GOSUB
Return

When a program obeys a GOSUB instruction, it must be instructed to RETURN to the main program after the sub-
routine has been executed. It should be noted that a single GOSUB statement can be linked to several RETURN
commands, allowing exits from any number of different points in the routine, depending on the circumstances. After
the RETURN, a jump is made back to the instruction immediately after the original GOSUB. For example:

E> Print "I am the main program"
For N=1 To 3
Gosub TEST
Next N
End
TEST:
Print "Here we go GOSUB" : Wait 50
Print "Number =";N
Return

POP
instruction: remove RETURN information
Pop

Normally you cannot exit from a GOSUB statement using a standard GOTO, and this may be inconvenient. For
example, there could be an error that makes it unacceptable to return to the

05.04.02

Control Structures

program exactly where you left it. In such circumstances, the POP command can be used to remove the return
address generated by a GOSUB, allowing you to leave the sub-routine without the final RETURN statement being
executed. For example:

E> Do
Gosub THERE
Loop
HERE:
Print "I've just popped out!"
Direct : Rem No risk of accidental subroutine
THERE:
Print "Hello There!"
If Mouse Key Then Pop : Goto HERE
Return

Decision making
The command words used in the decision making process have very similar meanings in AMOS Professional as
they do in normal English.

IF

THEN

structure: choose between alternative actions
If conditions Then statements

The IF ... THEN structure allows simple decisions to be made within a program, so IF a condition is true THEN the
computer decides to take a particular course of action. If the condition is not true, the machine does something else.
For example:

E> NIGHT=12
DAY=12
Print "What time is it now?" : Wait 150
If NIGHT=DAY Then Goto BED
Print "Time I bought a watch"
Goto WATCHMAKER

BED:
Print "I think it is bed time"
WATCHMAKER :

AND

OR

structures: qualify a condition
If condition And condition Then statement
If condition Or condition Then statement

05.04.03

Control Structures

The list of condition; in an IF ... THEN structure can be any list of tests, including AND and OR. Try changing the
conditions of the last example with either of the following lines:

E> If NIGHT=DAY And NIGHT<>12 Then Goto BED
E> If NIGHT<DAY Or NIGHT=12 Then Edit

ELSE
structure: qualify a condition
If condition Then statement] Else statement2

ELSE is also understood when making decisions, as to what action should be taken, depending on conditions. So the
last example could be changed to something like this:

E> If NIGHT+1=DAY Then Goto BED Else Shoot

The alternative choice of statements in this sort of structure must be a list of one or more AMOS Professional
instructions. Also remember to include a separate GOTO command if you want to jump to a label or a numbered
line, otherwise the label will be treated as a procedure name and it could possibly generate an error. For example:

X> If NIGHT=1 Then Goto BED: Rem This is perfect
X> If NIGHT=1 Then BED: Rem This looks for a BED procedure

An IF ... THEN statement is limited to a single line, of a listing, which is not very satisfactory to an AMOS
Professional programmer. This technique has been superseded by a "structured test", where IF is used to trigger off
a whole range of instructions, depending on the outcome of a single decision.

Structured tests

END IF
structure. terminate a structured test
If structured test End If

In a structured test, each test is set up with an IF and ended with a matching END IF, but under no circumstances
can a THEN be used anywhere inside such a test! The statements in a structured test are separated by colons on any
particular line, as usual, but can extend over any number of lines in your listing, as required. Look at this old
fashioned schematic line:

X> If condition=true Then Goto Labell Else Label2

This may now be replaced by the alternative structured test format:

X> If condition=true : Goto Labell : Else Goto Label2 : End If

05.04.04

Control Structures

Here is a working example:

E> Input "Type values A,B and C: ";A,B,C
If A=B
Print "A equals B";
Else
Print "A is not equal to B";
If A<>B And A<>C
Print "or to C"
End If
End If

Note how each IF statement must be paired with a single END IF to inform AMOS Professional exactly which
group of instructions is to be executed inside the test.

ELSE IF
structure: allow multiple structured tests
If condition Else If multiple conditions ... Else statement End If

This allows multiple tests to be performed. ELSE IF must be used within a normal IF ... END IF statement, and the
only rule to remember is that there must be one ELSE just before the END IF. This sort of test waits for an
expression, and if the expression is True, then what comes after it is executed. Here is an example:

X> If A=1
Print "A=1"
Else If A=2
Print "A=2"
Else If A=3
Print "A=3"
Else
Print "Something Else"
End If

If necessary, an entire test can be placed in a single line, as follows:

X> If A=1 : Print "A=1" : Else If A=2 : Print "A=2" : Else : Print "Something Else" : End If

When taking logical decisions, your Amiga understands the following character symbols, which are used as a form
of short-hand:

Symbol Meaning

= equal to

<> not equal to

greater than

less than

greater than or equal to
less than or equal to

ANV VV

There are also three functions that can be called during the decision making process.

05.04.05

Control Structures

TRUE

FALSE

functions: hold value of -1 (True) and zero (False)
value=True

value=False

In all the conditional operations such as IF ... THEN and REPEAT ... UNTIL, the value of -1 is used to represent
TRUE, and the value of 0 is used to represent FALSE. A value of either -1 (True) or 0 (False) is produced every
time a test is made to satisfy a condition.

NOT
structure: toggle binary digits
value=Not digits

NOT is used to swap over every digit in a binary number from a 0 to a 1, and vice versa. For example:
E> Print Bin$ (Not%11110000, 8)

Since -1 (True) can be expressed in binary as %1111111111111111, then NOT TRUE must be equal to FALSE, and
a logical NOT operation is achieved.

SWAP

structure: swap the contents of two variables
Swap a,b

Swap a#,b#

Swap a$,b$

Use the SWAP command to swap over the data between any two variables of the same type. For example:

E> A=10 : B=99: Print A,B
Swap A,B : Print A,B

Using loops

To write a separate routine for dozens of logical choices, and to end up with dozens of END IFs is not only messy,
but also extremely tedious. AMOS Professional offers all of the expected programming short-cuts to allow sections
of code to be repeated as often as necessary. These repeated parts of programs are known as "loops".

DO

LOOP

structure: keep repeating a list of statements
Do

list of statements

Loop

05.04.06

Control Structures

This pair of commands will loop a list of AMOS Professional statements forever, with DO acting as the marker
position for the LOOP to return to. Both the DO and LOOP should occupy their own lines, as follows:

E> Do
Print "FOREVER AND": Wait 25
Loop
EXIT
structure: break out of a loop
Exit

Exit number

EXIT forces the program to leave a loop immediately, and it can be used to escape from all the types of loop
employed in AMOS Professional, such as FOR ... NEXT, REPEAT ... UNTIL, WHILE ... WEND and DO ... LOOP.
Any number of loops may be nested inside of one another, and when used on its own, EXIT will short-circuit the
innermost loop only. By including an optional number after EXIT, that number of nested loops will be taken into
account before the EXIT is made, and the program will jump directly to the instruction immediately after the
relevant loop.

For example:

E> Do
Do
Input "Type in a number";X
Print "I am the inner loop"
If X=1 Then Exit
If X=2 Then Exit 2
Loop
Print "I am the outer loop"
Loop
Print "And I am outside both loops!"

EXIT IF

structure: exit from a loop depending on a test
Exit If expression

Exit If expression,number

It is often necessary to leave a loop as a result of a specific set of conditions, and this can be simplified by using the
EXIT IF instruction. As explained above, in conditional operations, the value -1 represents True, whereas a zero
represents False. After using EXIT IF, an expression is given which consists of one or more tests in standard AMOS
Professional format. The EXIT will only be performed IF the result is found to be -1 (True).

05.04.07

Control Structures

As before, an optional number can be given to specify the number of loops to be jumped from, otherwise only the
current loop will be aborted. For example:

E> While L=0
A=0
Do
A=A+1
For X=0 To 100
Exit If A=10,2 : Rem Exit from DO and FOR loops
Next X
Loop
Exit 1: Rem Exit from WHILE loop
Wend

Conditional loops

WHILE

WEND

structure: repeat loop while condition is true
While condition

list of statements

Wend

This pair of commands provides a convenient way of making the program repeat a group of instructions all the time
a particular condition is true. WHILE marks the start of this loop, and the condition is checked for a value of -1
(True) from this starting position through to the end position, which is marked by a WEND. The condition is then
checked again at every turn of the loop, until it is no longer true. For example:

E> BLAZES:
Print "Please type in the number 9"
Input X
While X=9
Cls : Print X : Wait 50 : Goto BLAZES
Wend

Print "That is not a 9!"
You are free to use AND, OR and NOT to qualify the conditions to be checked.

REPEAT

UNTIL

structure: repeat loop until a condition is satisfied
Repeat

list of statements

Until condition

05.04.08

Control Structures

Unlike that last example, instead of checking if a condition is true or false at the start of a loop, the pair of
commands makes its check at the end of a loop. REPEAT marks the start and UNTIL the end of the loop to be
checked. This means that if a condition is false at the beginning of a

WHILE ... WEND structure, that loop will never be performed at all, but if it is true at the beginning of a REPEAT
... UNTIL structure, the loop will be performed at least once. Here is an example that waits for you to press a mouse
button:

E> Repeat
Print "I can go on forever" : Wait 25
Until Mouse Key<>0

Controlled loops
When deciding how many times a loop is to be repeated, control can be made much more definite than relying on
whether conditions are true or false.

FOR

TO

NEXT

Structure: repeat loop a specific number of times
For index=first number To last number

list of statements

Next index

This control structure is one of the programmer's classic devices. Each FOR statement must be matched by a single
NEXT, and pairs of FOR ... NEXT loops can be nested inside one another. Each loop repeats a list of instructions
for a specific number of times, governed by an index which counts the number of times the loop is repeated. Once
inside the loop, this index can be read by the program as if it is a normal variable. Here is a simple example:

E> For X=1 To 7
Print "SEVEN DEADLY SINS"
Next X

STEP
structure: control increment of index in a loop
For index=first number To last number Step size

Normally, the index counter is increased by 1 unit at every turn of a FOR ... NEXT loop. When the current value
exceeds that of the last number specified, the loop is terminated. For example:

E> For DAY=1 To 365
Print DAY
Next DAY

STEP is used to change the size of increase in the index value, like this:

E> For DAY=1 To 365 Step 7
Print DAY
Next DAY

05.04.09

Control Structures

Forced jumps

So far, it has been explained how certain jumps are made to another part of a program by logical decisions based on
whether a situation is true or false. Similar jumps can be made whenever a particular variable is recognised, in other
words, regardless of any other conditions. GOTO and GOSUB are examples of a "forced" jump.

ON

Structure: jump on recognising a variable

On variable Proc list of procedures

On variable Goto list of numbered lines or labels
On variable Gosub list of numbered lines or labels

ON can be used to force the program to jump to a pre-defined position when it recognises a specified variable.
Furthermore, jumps can be made to a choice of several positions, depending on what value is held by the variable at
the time it is spotted. ON can force a jump to any of the following structures.

Procedures. When using an ON ... PROC structure, one or more named procedures is used as the target destination
for a jump, depending on the contents currently held by a variable. Look at the following line:

X> On X Proc PROCEDURE1, PROCEDURE2
That is exactly the same as saying:

X> If X=1 Then PROCEDURE1
If X=2 Then PROCEDUREZ2

It is important to note that procedures used in this way cannot include any parameters. If information is to be
transferred to the procedure, it should be placed in a global variable, as explained in Chapter 5.5.

Goto is used to jump to one of a list of numbered lines, or a label, depending on the result of an expression. For
example:

E> Print "Type in a value from 1 to 3"
Input X
On X Goto LABEL1l,LABEL2,LABEL3
LABEL1:
Print "Ready"
LABEL2:
Print "Steady"
LABEL3:
Print "Go!"

05.04.10

Control Structures

For that to work properly, X must have a value from 1 up to the number of the highest possible destination. Any
other values would cause problems. In fact the third line of that example is a very economical way of writing the
following lines:

X> If X=1 Then Goto LABEL1l
If X=2 Then Goto LABEL2
If X=3 Then Goto LABEL3

Now change the third line of the last example to this:

E> On X Goto LABEL3,LABEL2,LABELL

Gosub. The use of an ON GOSUB structure is identical to ON ... GOTO, except that it must employ a RETURN to
jump back to the instruction immediately after the ON ... GOSUB statement. Destinations may be given as the name
of a label, or the identification number of a line between 1 and the maximum number of possible destinations.

ON is also used with the ON BREAK PROC structure, as well as ON ERROR GOTO, which are explained in the
relevant sections of the Procedures and Error Handling Chapters of this User Guide.

EVERY

instruction: call subroutine or procedure at regular intervals
Every time Gosub label

Every time Proc name

The EVERY statement is used to call up a sub-routine or a procedure at regular intervals, without interfering with
the main program. Simply specify the length of time between every call, measured in 50ths of a second. Obviously
the time taken for a sub-routine or a procedure to be completed must be less than the interval time, or an error will
be generated.

After a sub-routine has been entered, the EVERY system is automatically disabled. This means that in order to call
this feature continuously, an EVERY ON command must be inserted into a sub-routine before the final RETURN
statement. Similarly, EVERY ON must be included in a procedure before returning to the main program with an
END PROC. For example:

E> Every 50 Proc TEST
Do
Print At (0,0); "Main Loop"
Loop
Procedure TEST
Shared A
Inc A: Print "This is call number ";A
Every On
End Proc

05.04.11

Control Structures

EVERY ON

EVERY OFF

instruction: toggle regular EVERY calls
Every On

Every Off

As explained, EVERY ON should be used before the relevant sub-routine or procedure has finished executing.
EVERY OFF is the default condition, and is used to disable the automatic calling process altogether.

Handling data

DATA
structure: place a list of data items in a program
Data list

A DATA statement lets you include whole lists of useful information in your programs. Each item in the list must
be separated by a comma, like this:

X> Data 1,2,3,4

Also each DATA instruction must be the only statement on the current line, because anything that follows it will be
ignored! Prove that with the following line:

E> Read A$: Print AS
Data "I am legal"™ : Print "But I am not!"

Data can be "read" into one or more variables, and unlike many Basic languages, AMOS Professional allows you to
include expressions as part of your data. So the following lines of code are all equally acceptable:

X> Data $FF50,$890
Data %11111111,%110011010110
Data A
Label: Data A+3/2.0-Sin (B)
Data "AMOS"+"Professional"

Examine those lines, and note that the A at Label will be input as the contents of variable A, and not the character
A. The expression will be evaluated using the latest value of A.

Data statements may be placed at any position in your program, but any data stored inside an AMOS Professional

procedure will not be accessible from the main program. Each procedure can have its own individual set of data
statements, which are completely independent from the rest of the program.

05.04.12

Control Structures

For example:

E> EXAMPLE
Read AS$: Print AS
Data "I am Main Program Data"
Procedure EXAMPLE
Read BS$: Print BS$S
Data "I am Procedure Data only"
End Proc

READ
structure: read data into a variable
Read list

When READ loads items of information that have been stored in a DATA statement into a list of variables, it uses a
special marker to jump to the first item in the first DATA statement of your listing. As soon as that item of data has
been read, the marker moves on to the next item in the list.

It must be remembered that the variables to be read must be of exactly the same type as the data held at the current
position. If you match up one type of stored data with a different type of variable after a READ command, the
appropriate error message will be given. Here is an example of correct matching:

E> N=Rnd (100)
Read AS,B,C,DS
Print AS$,B,C,DS$
Data "Text string",100,N,"AMOS"+"Professional"

RESTORE

structure: set the current READ pointer
Restore Label

Restore LABELS

Restore Line

Restore number

To change the order in which your data is read from the order in which it was originally stored, you can alter the
point where a READ operation expects to find the next DATA statement. The RESTORE command sets the position
of this pointer by referring to a particular label or line number, and both labels and numbers may be calculated as
part of an expression.

For example:

E> Restore LAST
Read AS
Print AS
Data "First"
Data "Middle"
LAST:
Data "Last"

Each Amos Professional procedure has its own individual data pointer, so any calls to the command will apply to
the current procedure only.

RESTORE is one of the AMOS Professional programmer's most useful devices to force the computer to select

information, depending on the actions of the user. It can be used for educational and business routines as well as
adventure and role-playing games.

05.04.13

Procedures

A procedure is a component of a computer program that allows the AMOS Professional programmer to tackle one
aspect of the program at a time, without becoming distracted or side-tracked by other programming considerations.
Procedures can be thought of as programming modules, each with a specific purpose and sphere of operation. This
Chapter explains how procedures are created and fully exploited.

Creating a procedure

PROCEDURE
Structure: create a procedure
Procedure NAME [list of optional parameters]

END PROC
structure: end a procedure
End Proc

A procedure is created in exactly the same way as a normal variable, by giving it a name. The name is then followed
by a list of parameters and the procedure must be ended with an END PROC command. PROCEDURE and END
PROC commands must be placed on their own individual lines. For example:

E> Procedure HELLO
Print "Hello, I am a procedure!"
End Proc

If you try and run that program, nothing will happen. This is because a procedure must be called up by name from
inside your program before it can do anything. Now add the following line at the start of that last example, and then
[Run] it.

E> HELLO

There is nothing preventing a procedure from calling itself, but this recursion is limited by the area of storage
allocated for local variables. If this local variable space is full, it can be increased using the SET BUFFER
command. Programs can also be held up if there is no more stack space available, and this problem is cured by the
following command.

SET STACK
instruction: set stack space
Set Stack number

When AMOS Professional procedures call themselves, an "Out of stack space" error message will be generated
after about fifty loops. Use the SET STACK instruction by specifying the new number of procedure calls that an be
made.

Keeping track of procedures

To help you find the starting positions of procedures in a very long program, there is a simple short-cut that uses just
two keys.

05.05.01

Procedures

By pressing [Alt] and [Down Arrow] together, the edit cursor automatically jumps to the next procedure definition
in your program. To jump to the previous procedure, press [Alt] and [Up Arrow] together. This shortcut works
equally well with labels and line numbers!

If you are using several procedures on the same line, you can avoid the risk of a procedure being confused with a
label by adding an extra space at the end of each statement. For example:

X> HEY: HEY: HEY: Rem Perform HEY procedure three times
HEY: HEY: HEY: Rem Define label HEY and perform HEY procedure twice

PROC
structure: flag a procedure
Proc NAME

Another way to identify a procedure is to precede it with a PROC statement. Run the following example:

E> Rem Demonstrate that a procedure is being called not simply a command
Proc HELLO
Rem The same can be achieved without the Proc
HELLO
Procedure HELLO
Print "Hey!"
End Proc

It is possible to place the procedure definition anywhere in your program. When AMOS Professional encounters a
procedure statement, the procedure is recognised and a jump is made to the final End Proc. In this way, there is no
risk of executing your procedure by accident.

Opening and closing procedures

If a great many procedures are used, your listings may appear cluttered and confused by all of their definitions.
Because of this problem, there is a simple method of "closing" a procedure. Self-contained procedures can be neatly
hidden away inside your main program if you need to reduce the size and complexity of your listings.

Type in the following procedure on your editing screen:

E> MAIN TITLE
Procedure MAIN TITLE
Curs Off
Centre "Main Title"
Say "Amos Professional presents."
Fade 5
End Proc

Run that if you like, and then return to the Edit screen.

05.05.02

Procedures

Make sure that the edit cursor is over the procedure statement, select the [Procedures] option rom the [Editor] menu
and trigger the [Open/Close] option, or hit [F9] as a short-cut. The procedure definition is neatly folded away from
view, and in normal practice you would be allowed to concentrate on your main program without the distraction of
chunks of procedures getting in the way. In other words, you can achieve greater programming clarity in your
listings by closing procedures from view. The last example should now look like this:

X> MAIN TITLE
Procedure MAIN TITLE

To reveal the procedure at any time, simply move the cursor back to the procedure line and reveal its definitions
with [F9] or [Open/Close].

Closed procedures can be executed as normal, and saved or loaded along with an AMOS Professional program
listing. But a closed procedure cannot be deleted using the program cursor, and a deletion can only be made if the
procedure is opened again or by means of the [Cut] option.

To open and close all of the procedures in the current program, the [Open All] and [Close All] options are provided.
Alternatively, you can use the keyboard short-cuts [Amiga]+[Shift] +[0] and [Amiga]+[Shift]+[C], as already
explained under the full list of Editor options in Chapter 4.1.

Jumping in and out of a procedure
You should be familiar with the use of ON for jumping to a GOSUB routine. It is just as simple to use this structure
with procedures.

ON ... PROC
Structure: trigger a jump to a procedure
On variable value Proc NAME

In this case, if a variable holds a particular value, a system is automatically triggered that forces a jump to a named
procedure. Of course you can have as many values triggering off as many jumps to different procedures as you
want. For example:

X> On X Proc PROCEDURE1, PROCEDURE2
Which is exactly the same as saying:

X> If X=1 Then PROCEDURE1
X> If X=2 Then PROCEDURE2

Normally, procedures will only return to the main program when the END PROC instruction is reached. But
supposing you need to jump out of a procedure instantly.

POP PROC
structure: leave a procedure immediately
Pop Proc

05.05.03

Procedures

The POP PROC instruction provides you with a fast getaway, if you ever find yourself in need of escape. Try this:

E> ESCAPE
Procedure ESCAPE
For PRISON=1 To 1000000000
If PRISON=10 Then Pop Proc
Print "I am abandoned."
Next PRISON
End Proc
Print "I'm free!"

ON BREAK PROC
Structure: jump to a procedure when break in program
On Break Proc NAME

A jump can also be made to a specified procedure when the program is interrupted. For example:

E> On Break Proc BROKEN
Do
Print "Unbroken" : Wait 50
Loop
Procedure BROKEN
Print "I am the procedure"
End Proc

Local and global variables

All of the variables that are defined inside a procedure work completely separately from any other variables in your
programs. We call these variables "local" to the procedure. All local variables are automatically discarded after the
procedure has finished executing, so that in the following example the same value of 1 will always be printed, no
matter how many times it is called:

X> Procedure PLUS
A=A+1 : Print A
End Proc

All the variables OUTSIDE of procedures are known as "global" variables, and they are not affected by any
instructions inside a procedure. So it is perfectly possible to have the same variable name referring to different
variables, depending on whether or not they are local or global.

When the next example is run, it can be seen that the values given to the global variables are different to those of the
local variables, even though they have the same name.

05.05.04

Procedures

Because the global variables cannot be accessed from inside the procedure, the procedure assigns a value of zero to
them no mater what value they are given globally.

E> A=666 : B=999
EXAMPLE
Print A,B
Procedure EXAMPLE
Print A,B
End Proc

To avoid errors, you must treat procedures as separate programs with their own sets of variables and instructions. So
it is very bad practice for the AMOS Professional programmer to use the same variable names inside and outside a
procedure, because you might well be confused into believing that completely different variables were the same, and
tracking down mistakes would become a nightmare. To make life easy, there are simple methods to overcome such
problems.

One method is to define a list of parameters in a procedure. This creates a group of local variables that can be
loaded directly from the main program. For example:

E> Procedure HELLO[NAMES]
Print "Hello ";NAMES
End Proc
Rem Load N$ into NAMES and enter procedure
Input "What is your name?",N$
HELLO[NS]
Rem Load string into NAMES$ and call HELLO
HELLO["nice to meet you!]

Note that the values to be loaded into NAMES$ are entered between square brackets as part of the procedure call.
This system works equally well with constants as well as variables, but although you are allowed to transfer integer,
real or string variables, you may not transfer arrays by this method. If you need to enter more than one parameter,
the variables must be separated by commas, like this:

X> Procedure TWINSI[A, B]
Procedure TRIPLETS[XS,YS, 7S]

Those procedures could be called like this:

X> TWINS[6, 9]
TRIPLETS["Xenon", "Yak","Zygote"]

SHARED
structure: define a list of global variables
Shared list of variables

05.05.05

Procedures

There is an alternative method of passing data between a procedure and the main program. When SHARED is
placed inside a procedure definition, it takes a list of local variables separated by commas and transforms them into
global variables, which can be directly accessed from the main program. Of course, if you declare any arrays as
global using this technique, they must already have been dimensioned in the main program. Here is an example:

E> A=666: B=999
EXAMPLE
Print A,B
Procedure EXAMPLE
Shared A,B
A=B-A: B=B+1
End Proc

EXAMPLE can now read and write information to the global variables A and B. If you need to share an arrayj, it
should be defined as follows:

X> Shared A(),B#(),CS ()

In a very large program, it is often convenient for different procedures to share the same set of global variables. This
offers an easy way of transferring large amounts of information between your procedures.

GLOBAL
structure: declare a list of global variables for procedures
Global list of variables

GLOBAL sets up a list of variables that can be accessed from absolutely anywhere in your program. This is a
simplified single command, designed to be used without the need for an explicit SHARED statement in your
procedure definitions. Here is an example:

E> A=6 : B=9

Global A,B
TEST1
TEST2
Print A,B

Procedure TESTI
A=A+1 : B=B+1
End Proc
Procedure TEST2
A=A+B : B=B+A
End Proc

AMOS Professional programmers who are familiar with earlier versions of the AMOS system are now able to
employ the new facility of using strings in procedure definitions. As with disc names, the "wild card" characters *
and ? can also be included. In this case, the * character is

05.05.06

Procedures

used to mean "match this with any list of characters in the variable name, until the next control character is
reached", and the ? character means "match this with any single character in the variable name". So the next line
would define every variable as global:

X> Global "*"

Now look at the following example:

X> Shared A,"V*","VAR*END","A20S*"
That line would declare the following variables as shared:

e A, as usual.

« Any variable beginning with the character V, followed by any other characters, or on its own.

« Any variable beginning with the letters VAR, followed by any other characters, and ending with the characters
END.

« Any variable beginning with A, followed by any single letter, followed by OS, followed by any other
characters.

GLOBAL or SHARED should be employed before the first use of the variable, otherwise it will have no effect on
an interpreted program, although it will affect programs compiled with the AMOS Professional Compiler.

Only strings may be used for this technique. Global and shared arrays cannot be defined using wild cards. These
must be defined individually, using brackets. Also, if you try to use an expression in this way, an error will be
generated.

For example:

X> AS="AM*"
Global AS

In that case, the A$ variable would be regarded as global, and it would not be taken as a wild card for subsequent
use.

With AMOS Professional, you are able to define global arrays from a procedure, even if the array is not created at
root level, as follows:

X> Procedure VARIABLES
Dim ARRAY (100,100)
Global ARRAY ()

End Proc

Returning values from a procedure
If you want to return a parameter from inside a procedure, that is to say, if you need to send back a value from a
local parameter, you need a way of telling your main program where to find this local variable.

05.05.07

Procedures

PARAM

function: return a parameter from a procedure

Param
Param#
Param$

The PARAM function takes the result of an expression in an END PROC statement, and returns it to the PARAM
variable. If the variable you are interested in is a string variable, the § character is used. Also note how the pairs of

square brackets are used in the next two examples:

E> JOIN STRINGS["one","two","three"]

Print Param$

Procedure JOIN STRINGS[AS$,BS,CS]

Print AS$,BS,CS
End Proc[AS+BS+CS]

For real number variables, the # character must be used as in the following example:

E> JOIN NUMBERS[1.5,2.25]

Print Param#

Procedure JOIN NUMBERS [A#, B#]

Print A#,B#
End Proc [A#+B#]

Local data statements

Any data statements defined inside your procedures are held completely separately from those in the main program.
This means that each procedure can have its own individual areas of data. Let us end this Chapter with a modest
example that calls the same procedure using different parameters, and then sets up additional data in variables.

E> Curs Off : Paper O
RECORD["Francois", "Lionet", 29, "Genius"]
RECORD["Mel", "Croucher", 44, "Unemployed"]
AS$="Richard" : BS$="Vanner"
RECORD[AS,B$,AGE, OCCS$]
Procedure RECORD[NAMES, SURNAMES, AGE, OCCS]

Cls 0: Locate 0,3

AS=NAMES+" "+SURNAMES
Centre AS$: Locate 0,6
AS="Age: "+Str$ (AGE)
Centre AS$: Locate 0,9
AS="Occupation: "+OCCS$
Centre AS$: Locate 0,16
Centre "Press a key"

End Proc

OCCS$="Slave Driver"

05.05.08

Text

This Chapter explains how to use the advantages of AMOS Professional for handling written text. You may want to
remind yourself of the visible character set by running this simple routine:

E> For 0=32 To 255

Print Chr$(C);" =Ascii Code";
Print Asc(Chr$(C)) : Wait 10
Next C

Printing on the screen
The PRINT instruction is one of the most familiar command words in most Basic languages.

PRINT
instruction: print items on screen
Print items

Items are printed on the screen, starting from the current cursor position, and they may include the characters in any
group of variables or constants, up to the maximum line length of 255 characters. The PRINT command is also used
to display graphics and information on screen, as is demonstrated throughout this User Guide. This Chapter will deal
with printing text only.

Print statements can occupy their own lines, but if more than one element to be printed is written as a single line of
your program, each element must be separated from the next by either a semi-colon character or a comma. An
element to be printed can be a string, a variable or a constant, and is placed inside a pair of quotation marks.

A semi-colon is used to print elements immediately after one another, like this:
E> Print "Follow";"on"
A comma moves the cursor to the next "Tab" position on the screen, as follows:

E> Print "Next","Tab"

A Tab is an automatic marker that sets up a location for printing, and is often used to lay out columns of figures, or
to make indentations in text, and setting Tab positions is explained later.

Normally, the cursor is advanced downwards by one line after every PRINT command, but by using the semi-colon
or comma, the rule can be changed. Here is an example:

E> Print "AMOS"
Print "Professional"
Print "AM";
Print "OS",
Print "Professional"

05.06.01

Text

Setting text options

PEN
instruction: set the colour of text
Pen index number

This command sets the colour of the text displayed in the current window, when followed by the colour index
number of your choice. The default setting of the pen colour is index number 2, which is white, and alternative
colours may be selected from one of up to 64 choices, depending on the current graphics mode. For example:

E> For INDEX=0 To 15
Pen INDEX
Print "Pen number ";INDEX
Next INDEX

PENS
function: return a control index number to set the pen colour
p$=Pen$(index number)

This function returns a special control sequence that changes the pen colour inside a string. This means that
whenever the string is printed on the screen, the pre-set pen colour is automatically assigned to it. The format of the
string returned by PENS is: Chr$(27)+"Pen"+Chr$(48+number). Here is an example:

E> P$=Pen$ (2)+"Well all WHITE, "+Pen$(6)+" I still got the BLUES"
Print P$
Pen 4
Print "In the RED"

PAPER
instruction: set colour of text background
Paper index number

To select a background colour on which your text is to be printed, the PAPER command is followed by a colour
index number between 0 and 63, depending on the graphics mode in use, in exactly the same way as PEN. The
normal default colour index number is 1, giving an orange background colour, with other possibilities listed under
the SCREEN OPEN command in this User Guide. Run the following simple example:

E> Pen 2: For INDEX=0 To 15
Paper INDEX: Print "Paper number ";INDEX;Space$ (23)
Next INDEX

05.06.02

Text

PAPERS
function: return a control index number to set background colour
b$=PAPERS$(index number)

Similarly to the PENS function, PAPERS returns a character string that automatically sets the background colour
when the string is printed on the screen. For example:

E> Pen 1
B$=Papers$ (3)+"Flash Harry"+Paper$ (1)+"The Invisible Man"
Print BS

Changing text options

INVERSE ON/OFF

instructions: toggle inverse mode of subsequent text
Inverse On

Inverse Off

The INVERSE instruction swaps over the text and background colours already selected by the PEN and PAPER
commands, and so sets up an inverse mode for printing. For example:

E> Pen 2 : Paper 4: Print "I appear normal"
Inverse On : Print "Poetry inverse"
Inverse Off : Print "Don't be so negative"

SHADE ON/OFF

instructions: toggle shading of subsequent text
Shade On

Shade Off

The appearance of your text can be changed more subtly by introducing a mask pattern that reduces the brightness of
the characters when printed. To make use of this shading facility, simply turn it on and off like this:

E> Shade On :Print "Shady Lady"
Shade Off:Print "Norman Normal"

Setting text styles
As well as customising the appearance of your text by changing the text options, you can also use the standard type-
face techniques available to printers and word processors.

UNDER ON/OFF

instructions: toggle underline mode of subsequent text
Under On

Under Off

05.06.03

Text

To underline text when printed on screen like this, use the UNDER instructions, as follows:

E> Under On : Print "This is where we draw the line"
Under Off: "That is groundless"

In Section 11.1 there is a full explanation of how to take advantage of any number of different type faces or fonts, by
making use of what is known as "graphic text". For the time being, try the next example:

E> Cls: For S=0 To 7: Set Text S
Text 100,5*20+20,AMOS Professional" : Next S

SET TEXT
instruction: set the style of a text font
Set Text style number

The SET TEXT command allows you to change the style of a font by selecting one of eight different styles that are
produced by mixing the following three elements

Bit O Underline
Bit 1 Bold
Bit 2 Italic

Set the appropriate bits in the form of a style number from 0 to 7, as in the last example.

TEXT STYLES
function: return current text style
s=Text Styles

This function returns the index reference of the text style you last selected using SET TEXT. The result is a bit-map
in the same format as explained above:

Set Text 2: Print "Style Two"
Print Text Styles

Changing the text mode
For even more flexibility in presenting your text on screen, you can select the way it is combined with other screen
data.

WRITING

instruction: select text writing mode of subsequent text
Writing valuel

Writing valuel,optional value2

The WRITING command is used to control how the subsequent text interacts with what is already on the screen,
and it can be followed by either one or two values.

05.06.04

Text

The first value selects one of five writing modes:

Value Mode Effect

0 REPLACE New text replaces any existing screen data

1 OR Merge new text with screen data, using logical OR

2 XOR Combine new text with screen data, using OR

3 AND Combine new text and screen data, using logical AND
4 IGNORE Ignore all subsequent printing instructions

A number set as the optional second value selects which parts of the text are to be printed on the screen, as follows:

Value Mode Effect

0 Normal Print text and background together
1 Paper Only the background to be drawn on screen
2 Pen Ignore paper colour and print text on background colour zero

The default value for both of the WRITING parameters is zero, giving normal printed output.

Positioning the text cursor
Characters are always printed at the current position of the text cursor, and the AMOS Professional programmer is
offered several methods of controlling the cursor in order to make text look more orderly, attractive or eye-catching.

LOCATE

instruction: position the text cursor
Locate x,

Locate ,y

Locate x,y

This command moves the text cursor to the coordinates of your choice, and this new location sets the start position
for all subsequent text printing until you command otherwise. All screen positions are measured in "text
coordinates", which are measured in units of one printed character on screen, with the x-coordinate controlling the
horizontal position and the y- coordinate referring to the vertical. So, the top left-hand corner of the screen has
coordinates of 0,0 whereas text coordinates of 15,10 refer to a position 15 characters from the left-hand edge of the
screen and 10 characters from the top.

The range of these coordinates will depend on the size of your character set and the dimensions of the display area
allocated, known as a "window". All coordinate measurements are taken using text coordinates relative to the current
window. If you try and print something outside of these limits, an error will be generated. Windows are dealt with in
the next Section, but the current screen is automatically treated as a window, so there is no need to "open" one to
test the following examples:

E> Print "0,0": Locate 10, : Print "Stay on current line"
Locate ,5 : Print "Six from the top."
Locate 10,10 : Print "Ten down and ten across"

05.06.05

Text

HOME
instruction: force text cursor home
Home

Whenever you need to move the text cursor back to the top left-hand corner of the screen in a hurry, simply tell it to
go HOME and it will automatically be relocated to coordinates 0,0 like this:

E> Cls: Locate 10,10: Print "I am going"
Wait 100: Home : Print "Home!"

CMOVE

instruction: move text cursor
Cmove width

Cmove height

Cmove width,height

It is also possible to move the text cursor a pre-set distance away from its current position, which can come in useful
if you need to show speech bubbles or shunt your text to one side temporarily. The CMOVE command is followed
by a pair of variables that represent the width and height of the required offset, and these values are added to the
current cursor coordinates. Like LOCATE, either of the coordinates can be omitted, as long as the comma is
positioned correctly. An additional technique is to use negative values as well as positive offsets. For example:

E> Cls : Print "Iceland"
Cmove 5,5: Print "Scotland";
Cmove ,-3 : Print "Norway"
Cmove 10,14: Print "France"

CMOVES$
function: return control string to move text cursor
a$=Cmove$(x.y)

Characters can be printed relative to the current cursor position by setting up a string using the CMOVES$ function.
The following example prints a string at coordinates 10,10 from the current text cursor:

E> AS$=Cmove$ (10,10)
AS=AS+"AMOS Professional"
Print AS

AT
function: return a string to position the text cursor
a$=At(x.y)

05.06.06

Text

You may also change the position of the text cursor directly from inside a character string. This is ideal for
positioning text once and for all on screen, no matter what happens in the program, because the text cursor can be set
during the program's initialisation phase. The string that is returned takes the following format:

Chr$ (27) +"X"+Chr$ (48+4X) +ChrS$S (27) +"Y"+Chr$ (48+Y)

So whenever this string is printed, the text cursor will be moved to the text coordinates held by X and Y. For
example:

E> AS="A"+At (10,10)+"Of"+At (2,4)+"String"+At (20,20)+"Pearls"”
Print AS$

Imagine a Hi-Score table positioned like this:

E> SCORE=999
Locate 12,10: Print "Hi Score ";SCORE

By using the AT function, the same table can be moved by editing a single string, no matter how many times it is
used in the program, like this:

E> HI SCORES=At (12,10)+"Hi Score"
SCORE=999
Print HI_SCORE$;SCORE

CENTRE
instruction: print text centrally on current line
Centre a$

Programmers often need to position text in the centre of the screen, and to save you the effort of calculating the text
coordinates in order to achieve this, the CENTRE command takes a string of characters and prints it in the middle of
the line currently occupied by the cursor. For example:

E> Locate 0,1
Centre "ABOVE"
Cmove ,3
Centre "suspicion"

TABS
function: move text cursor to next Tab
t$=Tab$

The TABS function returns a special control character called TAB, which carries the Ascii code of 9. When this
character is printed, the text cursor is automatically moved to the next tabulated column setting (Tab) to the right.

05.06.07

Text

The default setting for this is four characters, which can be changed as follows:

SET TAB
instruction: change Tab setting
Set Tab number

This simple command specifies the number of characters that the text cursor will move to the right when the next

TABS is printed. For example:

E> Cls : Print "Home"
Print Tab$;"And"
Set Tab 10 : Print Tab$;"Away"

CDOWN
instruction: move text cursor down
Cdown

Use this command to force the text cursor down a single line, like this:

E> Cls: Print "Over" : Cdown : Print "the Moon"

CDOWNS
function: return control character to move text cursor down
c$=Cdown$

The effect of summoning up the special control character (Ascii 31) is exactly the same as printing after a CDOWN
command. The advantage of this alternative is that several text cursor movements can be combined in a single

string, using CDOWNS. For example:

E> C$="Going Down"+Cdown$
For A=0 To 20
Print CS$
Next A

Ccup
instruction: move text cursor one line up

Cup

CLEFT
instruction: move text cursor one character left
Cleft

CRIGHT
instruction: move text cursor one character right
Cright

05.06.08

Text

These three commands are self-explanatory, and work in exactly the same way as CDOWN. their equivalent
functions are listed below, and work in the same way as CDOWNS:

CUPS
function: return control character (30) to move cursor up one line
x$=Cup$

CLEFTS
function: return control character (29) to move cursor left one character
x$=Cleft$

CRIGHTS
function: return control character (28) to move cursor right one character

x$=Cright$

CLINE

instruction: clear some or all text on current cursor line
Cline

Cline number

This command is used to clear the line currently occupied by the text cursor. If CLINE is qualified by a number,
then that number of characters get cleared, starting from the current cursor position and leaving the cursor exactly
where it is. For example:

E> Print "Testing Testing Testing";
Cmove -7,
Cline 7
Wait Key
Cline

Tracking the text cursor
To track down the exact position of the text cursor, the following pair of functions may be used

XCURS
function: return the x-coordinate of the text cursor
x=Xcurs

YCURS
function: return the y-coordinate of the text cursor
y=Ycurs

In this way, a variable is created that holds the relevant coordinate of the cursor, in text format, and these two
functions may be used independently or together. For example:

E> Locate 5,10: Print Xcurs; : Print Ycurs

MEMORIZE X/Y

instructions: save the x or y text cursor coordinates
Memorize X

Memorize Y

05.06.09

Text

The MEMORIZE commands store the current position of the x or y text cursor, so that you can print any text on the
screen without destroying the original cursor coordinates. These may be reloaded using the REMEMBER
commands, as follows:

REMEMBER X/Y

instructions: restore the x or y text cursor coordinates
Remember X

Remember Y

Use REMEMBER to position the text cursor at the coordinates saved by a previous MEMORIZE command. If
MEMORIZE has not been used, the relevant coordinate will automatically be set to zero. There is a ready-made
example demonstrating these commands to be found under the SET CURS command, which is below.

Changing the text cursor

CURS PEN
instruction: select colour of text cursor
Curs Pen index number

As a default, whenever your screen mode provides four or more colours the text cursor is set to index number 3,
which is endowed with a built-in flash. The flashing can be turned off and back on again at any time using the
FLASH OFF and FLASH commands, but as soon as you select another colour for your text cursor, the automatic
flash will not apply. To change colours, use the CURS PEN command, followed by the index number of your
choice. For example:

X> Curs Pen 2

Note that the new colour only effects the text cursor in the current open window, and has no influence over other
cursors used by any other windows. If you want to introduce a flash to that last example, you could add this line
before the CURS PEN command:

X> Flash 2," (FFF,15) (000,15)"

SET CURS
instruction: set the shape of the text cursor
Set Curs L1,L.2,1.3,1.4,1.5,L6,L.7,L.8

To customise the text cursor into something a little more personalised, you can change its shape into anything you
like, providing you limit yourself to the eight lines of eight bits each that represent its appearance. Lines are
numbered one to eight from top to bottom, and every bit set to 1 results in a pixel drawn in the current cursor pen
colour, whereas a zero displays the current paper colour. To familiarise yourself with the technique, try the next
example, which changes the text cursor into a Hallowe'en mask:

05.06.10

Text

E> L1=%00111100
L2=%01111110
L3=%01011010
L4=%11100111
L5=%10111101
L6=%501011010
L7=%500100100
L8=%00011000
Set Curs L1 L2 , L3 L4 L5, L6 , L7, L8

Your routine will appear slightly different from that, because the system automatically strips away any leading zeros
in binary listings.

CURS ON/OFF

instructions: toggle text cursor
Curs On

Curs Off

This pair of commands is use to hide and reveal the text cursor in the current window. It has no effect at all on any
cursors used in other windows.

Advanced text commands

ZONES$
function: create a zone around text
z$=7ZONES$(text$,zone number)

The AMOS Professional programmer is allowed to create powerful dialogue boxes and on- screen control panels
without the need to employ complex programming. The ZONES function surrounds a section of text with its own
screen zone, so that the presence of the mouse pointer can be detected using the ZONE function. Simply supply the
two parameters in brackets, which are the string of text for one of your control "buttons", followed by the number of
the screen zone to be defined.

The maximum number of zones will be limited by the value specified in a previous RESERVE ZONE command.
The format for the control string is as follows:

Chr$ (27)+"Z0"+AS+Chr$ (27)+"R"+Chr$ (48+n)

BORDERS
function: create a border around text
b$=Border$(text$, border number)

This works in much the same way as ZONES, by returning a string of characters that create a border around the

required string of text. The AMOS Professional programmer can use it with ZONES to set up special "buttons" for
alert windows and control consoles.

05.06.11

Text

In this case, the text held in the string will start at the current text cursor position. Border numbers can range from 1
to 16, for example:

E> Locate 1,1: Print Border$ ("AMOS Professional", 2)
The control sequence returned by BORDER has the following format:
Chr$ (27) +"EQ0"+AS$+Chr$ (27) +"R"+Chr$ (48+n)

HSCROLL
instruction: scroll text horizontally
Hscroll number

This command scrolls all text in the current open window horizontally, by a single character position. The following
numbers can be used:

Number Effect

1 Scroll current line to the left

2 Scroll entire screen to the left
3 Scroll current line to the right
4 Scroll entire screen to the right
VSCROLL

instruction: scroll text vertical
Vscroll number

Similarly to HSCROLL, the values given to this command result in different vertical scrolling effects, one character
at a time.

Number Effect

Scroll down text on and below current cursor Line

Scroll down text from top of screen to current cursor line only
Scroll up text from top of screen to current cursor line only
Scroll up text on or below current cursor line

BN

Note that blank lines are inserted to fill any gaps left by these scrolling operations.

Advanced printing
The AMOS Professional programmer is not restricted to the standard PRINT command for displaying information.

9
instruction: print
Print

The question mark character (?) can be used instead of PRINT as a keyboard short-cut.

05.06.12

Text

When used in this way, it is automatically displayed as PRINT as soon as the line has been entered into your listing.

E> ? "AMOS Professional"

USING
instruction: format printed output
Print Using format$;variable list

USING is always employed with the PRINT command to allow subtle changes in the way output is printed from a
list of variables. The format string contains special characters, and each one has a different effect, as explained
below.

~

tilde character [Shift]+[#]

Every ~ in the string variable is replaced by a single character from left to right, taken from an output string. For
example:

E> Print Using "This is a ~~~~~~ example";"simple"

#
hash character

Each # specifies one digit at a time, to be printed out from a given variable, with any unused digits being replaced
by spaces. For example:

E> Print Using "###";123456

+
plus character

This adds a plus sign to a positive number or a minus sign if the number is negative. For example:
E> Print Using "+##";10 : Print Using "+##";-10

minus character

This gives a minus sign to negative numbers only. Positive numbers will be preceded by a space. For example:

E> Print Using "-##";10:Print Using "-##";-10

05.06.13

Text

full stop character

When used with PRINT USING, the full stop (period) character places a decimal point in a number, and
automatically centres it on screen. For example:

E> Print Using ".###";Pi#

5
semi-colon character

This centres a number, but will not output a decimal point. For example:

E> Print Using "Pl is #;###";Pi#

A

exponential (circumflex) character [Shift]+[6]

This causes a number to be printed out in exponential format. For example:

E> Print Using "This is an exponential number”";10000*10000.5

Sending text to a printer
Chapter 10.3 is devoted to the exploitation of the printer device by AMOS Professional. The following command
offers easy access to a printer from inside an AMOS Professional program or via Direct mode.

LPRINT
instruction: output a list of variables to a printer
Lprint variable list

The LPRINT command is exactly the same as a PRINT command, but it sends data to a printer instead of the
screen, like this:

X> Lprint "Greetings from AMOS Professional!"

05.06.14

Windows

The AMOS Professional programmer expects to be able to produce file selectors, warning boxes and on-screen
control panels with a few simple lines of code. The range of windowing command featured in this Chapter allow
you to create interactive dialogue boxes by restricting text and graphics operations to selected areas of the current
screen.

A "window" is simply a rectangular display area, which must first be opened before electronic life can course
through it. Your current screen is treated as a window, and opened automatically by the AMOS Professional system
as window number zero. All other windows have to be opened by you, and you are advised not to re-open window
zero or change its size or position.

Creating windows

WIND OPEN

instruction: create a window

Wind Open number,x,y,width,height

Wind Open number,x,y,width,height,border

The window opened by this instruction will be displayed on screen and used for all subsequent text operation until
you command otherwise. WIND OPEN must be qualified by a window number (don't forget that zero has already
been allocated to the current screen), followed by the x,y graphic coordinates setting the top left-hand corner of the
new window, followed by the width and height of the new window in the number of characters needed. You may
also specify an optional border style, with values ranging from 1 to 16.

Because the Amiga employs its blitter to draw windows, they must always lie on a 16-pixel boundary. AMOS
Professional automatically rounds your x-coordinates to the nearest multiple of 16. Additionally, if you have
specified a border for your window, the x and y-coordinates will be incremented by an additional 8 pixels. In this
way, you can be sure that your windows always start at the correct screen boundary. There are no boundary
restrictions on the y- coordinates. Titles can also be included in window borders, which will be dealt with a little
later. Try this example:

E> For W=1 To 3
Wind Open W, (W-1)*96,50,10,15,W
Paper W+3 : Pen W+6 : Clw
Print "Window";W
Next W

WINDOW
instruction: change the current window
Window number

This command sets the window number specified as the active window, to be used for all future text operations.
There is an automatic saving system for re-drawing the contents of windows, which is explained below.

05.07.01

Windows

For now, run the last example from Direct mode and enter the following statements:

D> Window 1: Print "AMOS"
D> Window 3: Print "open windows on the world"
D> Window 2: "lets me"

The active window is host to the flashing text cursor, unless it has been made invisible with a CURS OFF command.

BORDER
instruction: change window border
Border number,paper, pen

This command allows you to change the style and colour of the current window border. Border style numbers range
from 1 to 16, and the paper and pen colours can be selected from any available colour index numbers. Any of these
parameters can be omitted from the BORDER instruction as long as the commas are included for any missing
values: If the last example is still on screen, enter these lines from direct mode:

D> Border 3,2,3
D> Border 2,,

TITLE TOP
instruction: set title at top of current window
Title Top title$

Use this command to set a border title at the top of the current window to your chosen title string. This facility will
only operate with bordered windows, as follows:

E> Cls: Wind Open 4,1,1,20,10,1
Title Top "Top of the morning"

TITLE BOTTOM
instruction: set title at bottom of current window
Title Bottom title$

Similarly, this instruction assigns a string to the bottom title of the current window, like this:

E> Cls : Wind Open 5,75,50,24,15
Border 5,6,
Title Bottom "Bottom of the barrel"

05.07.02

Windows

Manipulating windows

WINDON
function: return the value of the current window
w=Windon

Before using windows in your programs, you will need to refer to their identification numbers. This function returns
the value of the current window. For example:

E> Do
Cls : Wind Open Rnd(99)+1,1,1,25,5,1
Print "Window number ";Windon : Wait Key
Loop
WIND SAVE
instruction: save the contents of the current window
Wind Save

This command is extremely valuable for the AMOS Professional programmer. Once activated, the WIND SAVE
feature allows you to move your windows anywhere on screen without corrupting the existing display, by the
following method. The contents of the current window is saved as soon as the command is used, and then every
time a new window is opened, the contents of the windows underneath get saved automatically. The screen is then
re-drawn whenever a window is moved to a new position or closed.

As you begin a new program, the current window (the default screen) consumes 32k of valuable memory, and this
would be wasted if you were to save it as background beneath a small dialogue box. To solve this problem, create a
dummy window of the size you need, and place it over the zone you want to save. Now execute your WIND SAVE
command and continue with your program. When this dialogue box is called up, the area beneath it will be saved as
part of your dummy window, so it will automatically be restored after your box has been removed.

WIND CLOSE
instruction: close the current window
Wind Close

The WIND CLOSE command deletes the current window. If the WIND SAVE command has been activated, the
deleted window will be replaced by the saved graphics, otherwise the area will be totally erased from the screen.
Here is an example:

E> Wind Open 1,1,8,35,18,1 : Print "Press a key to close this window"
Wait Key
Wind Close

WIND MOVE
instruction: move the current window
Wind Move x,y

05.07.03

Windows

The current window can 'be moved to any acceptable graphic coordinates. Give the new x,y- coordinates after the
WIND MOVE command, and the x-coordinate will be rounded to the nearest 16-pixel boundary automatically. Here
is an example:

E> Wind Save : Wind Open 1,0,2,30,10,1 : Wind Save
For M=1 To 100

Pen Rnd(15) : Paper Rnd(15) : Print : Centre "Making Movies"
Wind Move Rnd(30)+1,Rnd(100)+1
Wait VbI

Next M

SCROLL ON/OFF

instructions: toggle window scrolling on and off
Scroll On

Scroll Off

The SCROLL commands are used to control the scrolling of the current window. SCROLL OFF turns off the
scrolling, and whenever the cursor passes beyond the bottom of the window it will reappear from the top. SCROLL
ON starts the scrolling process again, so that a new line is inserted when the cursor tries to pass beyond the bottom
of the window.

WIND SIZE
instruction: change the size of the current window
Wind Size width, height

To change the size of the current window, specify the new width and new height in terms of the number of
characters. If WIND SAVE has been activated, the original contents of the window will be re-drawn by this
instruction. If the new window size is smaller than the original, any parts of the original image that lie outside of the
new window boundaries will be lost. Alternatively, if the new window is larger, the space around the saved area will
be filled with the current paper colour. Please note that the text cursor is always re-set to coordinates 0,0. For
example:

E> Wind Open 1,16,16,22,10,2
Print "I want to be wider!"
Wind Save
Wait 50
Wind Size 30,10

CLW
instruction: clear the current window
Clw

This simple command erases the contents of the current window and replaces it with a block of the current PAPER
colour.

05.07.04

Windows

Like this:

E> Cls: Paper 4 : Wind Open 1,1,1,12,5,1
Window 1: Print "Clear Off" : Wait 75
Paper 9 : Clw

Creating slider bars
One of the standard uses of windows is to create interactive slider bars, like the one at the right- hand side of your
AMOS Professional Edit Screen.

HSLIDER
instruction: draw a horizontal slider bar
Hslider x1 ,y1 To x2,y2, units, position, length

Horizontal slider bars are set up by giving the HSLIDER command, qualified by the following parameters: the x,y-
coordinates of the top left-hand corner of the bar in pixels followed by the x,y-coordinates of the bottom right-hand
corner, then the number of individual units that the slider is divided into. Next, you must specify the position of the
active slider box or control button from the left-hand end of the slider, measured in the same sized units as the slider
divisions. Finally, give the length of the slider control box in these units. The size of each unit is calculated with this
formula:

(x2-x1) /number of units

Here is an example:

E> Hslider 10,10 To 100,20,100,20,5
Hslider 10,50 To 150,100,25,10,10

VSLIDER
instruction: draw a vertical slider
Vslider x1 ,yl To x2,y2,units,position,length

This works in the same way as Hslider, and sets up vertical slider bars. For a working demonstration, examine the
vertical slider in the Editor window, where the number of units into which the slider is divided is set to the number
of lines in the current program.

Here is a simpler example:

E> vslider 10,10 To 20,100,100,20,5
Vslider 250,0 To 319,199,10,2,6

SET SLIDER
instruction: set fill pattern for slider bar
Set Slider ink1,paperl,outlinel,patternl,ink2,paper2,outline2,pattern2

SET SLIDER is used to set up the colours and patterns used for your slider bars and their control boxes.

05.07.05

Windows

Simply give the index numbers of the ink, paper, outline and pattern to be used for the slider bar, followed by the
ink paper, outline and pattern to be used by the slider control box. If negative values are used for either pattern, a
sprite image will be commandeered from the sprite bank, allowing even more spectacular effects. Try this example:

E> Centre "<Press a key>" : Curs Off
Do
Al=Rnd (15) : B1=Rnd(15) : Cl=Rnd(15) : D1=Rnd(24)
A2=Rnd (15) : B2=Rnd(1l5) : C2=Rnd(1l5) : D2=Rnd(24)

Set Slider Al ,B1,C1,D1,A2,B2,C2,D2
Hslider 10,10 To 300,60,100,20,25
Vslider 10,60 To 20,190,100,20,25
Wait Key
Loop

Having set up your slider bars, you will want to activate them using the mouse. A simple routine to create working
slider bars needs to be included in your main program. As always, remember to test out the ready-made example
programs, for a working guide.

Displaying a text window

To end this Chapter, here is an extremely useful AMOS Professional feature that allows the display of a text file
directly on screen. Text can be displayed in its own independent screen, it may be scrolled through at will, the
display window can be dragged around the screen and there is even a facility to include a title line.

READ TEXTS

instruction: display a text window on screen
Read Text$ name$

Read Text$ name$,address, length

In its simplest form, the READ TEXT$ command reads the text held in a specified filename on disc, for example:
X> Read Text$ Fsel$ ("**")
You can move through the displayed text using scroll bars, the arrow icons or via the following key combinations:

Key Press Effect

[Up Arrow]/[Down Arrow] Move up/down by one line
[Shift]+[Up Arrow]/[Down Arrow] Scroll up/down by one page
[Ctrl]+[Up Arrow]/[Down Arrow] Jump directly to top/bottom of text
[Esc] or [Return] Exit

To read some text from an address in memory, there is an alternative version of the READ TEXTS$ command. In
this case the name$ parameter refers to a title line that will be printed at the top of the viewing window. Address
holds the address of the first line of the text to be read. Length specifies the length of the text to be read, in bytes.

05.07.06

the Joystick and Mouse

This Chapter clarifies all aspects of controlling and exploiting the joystick and mouse in your programs.

Joysticks

A joystick can be used to control movement around the screen by pushing its handle in the desired direction, and to
trigger all sorts of actions by pressing one or more buttons built in to its mechanism. Either of the two joystick
sockets at the back or side of your Amiga will happily accept a joystick plug. If two users want to control one
joystick each for specially written programs, both ports can be used. To make a joystick interact with your programs,
the computer !Weds to be able to read its movements and actions. AMOS Professional offers a number of useful
functions to do just that.

JOY
function: read status of joystick
status=Joy(port number)

This inspects what is happening with the joystick and makes a report. If the joystick you are interested in is plugged
into the joystick port, the computer must be told to look at port number (1). If you are using the mouse port call that
port number (0). For example:

E> Do

J=Joy (1)

Print Bin$(J,5),J
Loop

When you run that routine, reports are given about the movements of the joystick and the status of the fire-button in
the form of binary numbers. The pattern of ones and zeros in the report can then be inspected. Binary bits shown as
zero indicate that nothing is happening, whereas if any of the bits in the report is shown as a one, it means that the

joystick has been moved in the direction that relates to that bit. Here is a list of those bits along with their meanings.

Bit number Meaning

Joystick has been moved Up
Joystick has been moved Down
Joystick has been moved Left
Joystick has been moved Right
Fire-button has been pressed

S WN O

Each of those aspects of the joystick status can be accessed individually, using the following functions:

JLEFT
function: test for joystick movement towards the left
x=Jleft(port number)

This returns a value of -1 (meaning True) if the joystick connected to the given port number has been pushed to the
left, otherwise a value of 0 is returned (meaning False).

05.08.01

the Joystick and Mouse

The three other function in this family are self-evident, as follows:

JRIGHT

function: test for joystick movement towards the right
x=Jright(port number)

JUP
function: test for joystick movement upwards
x=Jup(port number)

JDOWN

function: test for joystick movement downwards
x=Jdown(port number)

These functions can be demonstrated by the following example:

E> Do
If Jleft(l) Then Print "WEST"
If Jright (1) Then Print "EAST"
If Jup(l) Then Print "NORTH"
If Jdown(l) Then Print "SOUTH"
Loop

FIRE
function: test status of fire-button
x=Fire(port number)

To set up a routine for testing to see if the fire-button has been pressed, use the FIRE function followed by the
joystick port number. A value of -1 will be given only if the fire-button on the relevant joystick has been pressed.

E> Do
F=Fire (1)
If F=-1 Then Centre "BANG!": Shoot
Print
Loop

The mouse pointer

The mouse is often used in practical programming whereas joysticks have become associated with playing computer
games, but they both do much the same thing. They can both control moving objects on screen and be used to select
from a range of on-screen options, using a cursor.

The mouse cursor has been pre-programmed to look like a pointer arrow, along with two additional standard shapes
that can be selected at any time. The standard shapes have been assigned the numbers one to three, as follows:

05.08.02

the Joystick and Mouse

Number Shape of mouse cursor

1 Arrow pointer (default shape)
2 Cross-hair
3 Clock

CHANGE MOUSE
instruction: change the shape of the mouse pointer
Change Mouse number

To change the shape of the pointer arrow, use this command followed by the number of the required shape listed
above. For example:

E> Do
For N=1 To 3
Change Mouse N
Wait 25
Next N
Loop

There is no need to restrict your choice to these three shapes. If you select an image number greater than three,
AMOS Professional will look at an image stored in the sprite bank, and install it as the mouse pointer. The first
image in the bank may be called up by using Change Mouse 4, the second by specifying number 5, and so on. To
make use of this option, sprites can feature no more than four colours, and they must be exactly 16 pixels wide,
although any height is allowed. For such oversized sprites, the SET SPRITE BUFFER command should be used,
which is explained in Chapter 7.1.

HIDE

instruction: remove the mouse pointer from the screen
Hide

Hide On

This instruction hides the mouse pointer by making it invisible. Although it cannot be seen, it is still active and
sending back reports, and the position of the mouse pointer co-ordinates can still be read. AMOS Professional will
automatically count the number of times that the HIDE instruction is used, and employ this number to SHOW the
mouse pointer once again at your command. If you prefer to keep the mouse pointer invisible all the time and ignore
the counting system, use the special ON version of the instruction, like this:

X> Hide On

SHOW

instruction: reveal the mouse pointer back on screen
Show

Show On

This makes the mouse pointer visible again after a HIDE instruction.

05.08.03

the Joystick and Mouse

As a default, the system counts the number of times that the HIDE command has been used, then reveals the pointer
on screen when the number of SHOWSs equals the number of HIDEs. To bypass this counting system and reveal the
mouse pointer immediately, use SHOW ON.

E> Do
For N=1 To 10
Hide : Wait N : Show
Next N
Loop

Reading the status of the mouse
Whether or not the mouse pointer is visible, the computer must know two things in order to make any use of the
mouse. It needs to recognise where the mouse pointer is as well as if any of the mouse buttons have been pressed.

X MOUSE

reserved variable: report or set the x-co-ordinate of the mouse pointer
X Mouse

x=X Mouse

X MOUSE reports the current location of the x-coordinate of the mouse pointer. Because movement is controlled by
the mouse rather than by software, coordinates are given in hardware notation, which is demonstrated by the
following example:

E> Do
Print X Mouse
Loop

This can also be used to set a new coordinate position for the mouse pointer and move it to a specific position on the
screen. This is done by assigning a value to X MOUSE as if it was a Basic variable. For example:

E> For N=200 To 350
X Mouse=N
Print X Mouse
Next N

Y MOUSE

reserved variable: report or set the y-coordinate of the mouse pointer
Y Mouse

y=Y Mouse

Y MOUSE is used to give the y-coordinate of the mouse pointer in hardware co-ordinates, or to reposition the
mouse pointer on screen, and it is employed in exactly the same way as X MOUSE.

05.08.04

the Joystick and Mouse

E> For N=150 To 300
X Mouse=N : Y Mouse=N/2

Print X Mouse : Print Y Mouse
Next N
MOUSE KEY
function: read status of mouse buttons
k=Mouse Key

The MOUSE KEY function checks whether one of the mouse buttons has been pressed and makes a report in the
form of a binary pattern made up of these elements:

Pattern Report

Bit O Left mouse button

Bit 1 Right mouse button

Bit 2 Third mouse button if it exists

As usual, the numbers zero and one make up the report, with a one displayed when the relevant button is held down,
otherwise a zero is shown. Try this routine:

E> Curs Off
Do
Locate 0,0
M= Mouse Key : Print "Bit Pattern ";Bin$ (M, 8);" Number ";M
Loop

MOUSE CLICK
function: check for click of mouse button
c=Mouse Click

This is similar to MOUSE KEY, but instead of checking to see whether or not a mouse button is held down,
MOUSE CLICK is only interested in whether the user has just made a single click on a mouse button. It returns the
familiar bit pattern of these elements:

Pattern Report

Bit 1 Single test for left mouse button

Bit 2 Single test for right mouse button

Bit 3 Single test for third mouse button, if available

These bits are automatically re-set to zero after one test has been made, so they will only check for a single key
press at a time. Here is an example:

E> Curs Off
Do
M=Mouse Click
If M<>0 Then Print "Bit Pattern ";Bin$ (M, 8);" Number";M
Loop

05.08.05

the Joystick and Mouse

Limiting the mouse pointer

One of the commonest screen conventions for both leisure and serious programs is the use of control panels. AMOS
Professional relies on them extensively for ease of use and clarity. Supposing you need to set up a control panel on
your screen, but you want to prevent the mouse pointer from wandering outside the area of that panel.

LIMIT MOUSE

instruction: limit mouse pointer to part of the screen
Limit Mouse x1 ,yl To x2,y2

Limit Mouse

This command sets up a rectangular area for the mouse pointer to move around, and traps it inside the boundaries
,set by hardware coordinates, from the rectangle's top-left TO bottom right-hand corner. For example:

E> Limit Mouse 300,100 To 350,150

If you need to restore freedom to the mouse pointer and allow it to move around the entire screen, use the LIMIT
MOUSE instruction on its own, without any coordinates after it. Note that SCREEN OPEN must be followed by a
WAIT VBL command before LIMIT MOUSE can be used, otherwise no screen will be set up for screen limits to be
set.

Finding the mouse pointer
If you already understand the concept of different screens and screen zone numbers, you will appreciate that it is not
difficult to lose track of the mouse pointer.

You may need to keep a check on various screens and screen zones in order to keep in control of the mouse pointer.
If you do not already understand the concept of different screens and screen zone numbers, you will need to become
familiar with the various SCREEN commands and ZONE functions.

MOUSE ZONE
function: check if the mouse pointer is in a zone
zone number=Mouse Zone

The MOUSE ZONE function checks to see where the mouse pointer is currently located, and if it has entered a
screen zone, the number of that zone is returned. It is equivalent to the following line:

X> X=Hzone (X Mouse,Y Mouse)

MOUSE SCREEN
function: check which screen the mouse pointer is occupying
screen number=Mouse Screen

05.08.06

the Joystick and Mouse

Use MOUSE SCREEN to return the number of the screen where the mouse pointer is currently located, like this:

E> X=Mouse Screen
Print X

Displaying menus with the mouse pointer
Finally, as an AMOS Professional programmer, you will want to make use of the automatic facility for displaying
all the menus whose root starts from the current position of the mouse pointer.

MENU MOUSE

instruction: display menu under current mouse pointer location
Menu Mouse On

Menu Mouse Off

When this facility is turned ON, any menus that have been set up at the current location of the mouse pointer are
instantly displayed on screen. The mouse coordinates are added to the MENU BASE in order to calculate the
position where the menus are displayed, so you are able to place a menu at a pre-set distance away from the mouse
pointer if you like. To stop this automatic process, simply use MENU MOUSE OFF.

Please see Chapter 6.5 which deals with all aspects of AMOS Professional menus, if you are not experienced in their
use.

05.08.07

Memory Banks

This Chapter explains what memory banks are, the sort of information they can hold and how they are used.

Any AMOS Professional program can include optional lists of images, audio samples or music themes. These items
are managed by the AMOS Professional system automatically, and they can be permanently installed as part of your
programs. This means that once these items have been set up, they may be exploited instantly.

AMOS Professional stores this information in special areas of accommodation known as memory banks", and these
banks can be created by certain accessories such as the Object Editor, or directly inside a program with the
RESERVE command. Memory banks are also generated as a direct result of certain instructions, such as GET
SPRITE and FRAME LOAD.

Memory bank numbers, names and types

Every memory bank is assigned its own unique number, ranging from 1 up to 65535. Bank numbers 1 to 4 are
normally reserved for Objects, icons, music and AMAL programs, and the remaining banks can be used for any
information you choose.

As well as their identification number, most memory banks also have a name, indicating the type of information that
they are holding. Here are some typical names:

"Sprites" can contain Objects used for Sprite and Bob images.
"Samples" can hold sound samples.

"Music" can store melodies and background music.
"Resource" can store definitions for control buttons and boxes.

There are two main types of memory bank, "data banks" and "work banks".

A data bank is used to hold vital information which must be permanently available for your programs to use. Data
banks are saved along with the program's Basic listings automatically. This means that once they have been
installed, there is no need to worry about them any further.

A work bank is temporary, and is freshly defined every time that a program is run. Work banks are totally discarded
when programs are saved onto disc.

Memory banks are also organised according to the type of memory that they make use of.

Fast banks are stored in fast memory, if this type of memory is available. Fast memory cannot be used for items
that need to be accessed by the Amiga's hardware chips, such as Sprites or samples, but they are fine for AMAL
programs or menu definitions.

Chip banks are reserved using the Amiga's chip memory, and they can be used directly with the Amiga's own

sound and graphics chips. Depending on the model of Amiga in use, there can be anything between 512k and 2024k
of chip Ram at your disposal.

05.09.01

Memory Banks

Here is a list of the most common types of memory bank that will be used with AMOS Professional programs:

Bank Name Items Stored Bank Type Memory Notes
Sprites Sprite or Bob images Permanent Chip Bank 1 only
Icons Icon images Permanent Chip Bank 2 only
Music Melodies Permanent Chip Bank 3 only
AMAL AMAL progs. and PL table Permanent Fast Bank 4 only
Samples audio samples Permanent Chip Bank 5
default

Menu menu definitions Permanent Fast any bank
Pic.Pac compressed pictures Permanent Fast any bank
Resource buttons and dialogues Permanent Fast any bank
Tracker Noisetracker music Permanent Chip any bank
Chip Work temporary chip workspace Temporary Chip any bank
Fast Work temporary fast workspace Temporary Fast any bank
Chip Data long-term chip data Permanent Chip any bank
Fast Data constant fast data Permanent Fast any bank

Reserving a bank

It has already been explained that AMOS Professional allocates certain types of bank automatically. To create any
other required memory bank, they must first be "reserved". The RESERVE AS command is followed by the type of
bank that you want to create, a comma, then the number of bytes needed for the length of this bank.

If a selected bank already exists, it will be erased to make room for the new definition.

Allowable bank numbers range from 1 to 65535, but because bank numbers 1 to 4 are already used internally by
the AMOS Professional system, new banks should be reserved using the bank numbers 5 and above. For users who
have upgraded from earlier versions of the AMOS system, you will have noted the increase in the range of available
bank numbers from the original 15. There are four alternative types of bank that can be reserved, and these will now
be explained.

RESERVE AS DATA
instruction: reserve a new data bank
Reserve As Data bank number,length

This reserves the selected bank number with the number of bytes specified as its length. Data banks are permanent,
and wherever possible, their memory will be allocated from fast memory, so this type of bank should not be used
for information such as Objects and samples which need to be accessed directly by the Amiga's hardware chips.

RESERVE AS WORK
instruction: reserve a new work bank
Reserve as Work bank number,length

This allocates a temporary workspace of the requested length from fast memory, if it is available.

05.09.02

Memory Banks

The work data will be erased every time the program is run from the Editor, and it will be discarded when the listing
is saved onto disc. A quick check can be made to see if the data area has been successfully assigned to fast memory,
using the FAST FREE function, like this:

E> M=Fast Free : Rem Give the amount of available FAST memory
Reserve As Work 10,1000
If M<>Fast Free
Print "The Data has been stored in FAST Ram"
Else
Print "Sorry, there is only CHIP Ram available"
End If

RESERVE AS CHIP DATA
instruction: reserve a new chip data bank
Reserve As Chip Data bank number,length

Use this variation of the RESERVE AS instruction to allocate a permanent area of memory using Chip Ram. If
there is none available, an "Out of Memory" error will be reported. You can obtain an instant read-out of the
remaining chip memory by calling the CHIP FREE function, as follows:

E> CF=Chip Free
Print "Remaining Chip memory = ";CF;" bytes."

Once a bank has been defined by this command, it will be saved automatically, along with your AMOS Professional
Basic program.

RESERVE AS CHIP WORK
instruction: reserve a new chip work bank
Reserve As Chip Work bank number,length

This command allocates the selected block of temporary memory using Chip Ram, and it is often used with the
DOUBLE BUFFERED sampling system, to play samples directly from hard disc. Here are some typical examples of
the different RESERVE AS commands:

X> Reserve As Chip Work 10,10000: Rem 10000 bytes of chip workspace to bank 10
Reserve As Work 11,5000: Rem 5000 bytes of fast workspace to bank 11
Reserve As Chip Data 12,2000 : Rem 2000 bytes of permanent chip data to bank 12
Reserve as Data 13,1000 : Rem 1000 bytes of fast data to bank 13

Saving memory banks
AMOS Professional provides the simplest of instructions for saving memory banks.

SAVE

instruction: save one or more memory banks onto disc
Save "filename.abk"

Save "filename.abk",bank number

05.09.03

Memory Banks

If a bank has been created using RESERVE, or some screen Objects have been defined with a command such as
GET BOB, the new data can be saved onto a suitable disc in one of two ways.

When the SAVE command is followed by a string containing a filename, all current memory banks will be saved
into a single large file, bearing that name. The filename can be anything at all, but it is common practice to add the
".Abk" extension at the end, to remind yourself that this is an AMOS Professional memory bank. Similarly, an
".Abs" extension is used to indicate a file containing a group of several memory banks.

By adding an optional bank number after the filename, only that selected bank will be stored in the named file onto
disc.

Here is an example of an instant image-bank generator:

E> N=1 : Rem Set number of first new image to create
S=1 : Rem Set size of image*16
Rem Create images in bank one
For G=0 To 4
Rem Draw the images
Ink G+1 : Circle S*7,S8*7,S*7 : Paint S*8,S*8
Ink O0: Ellipse S*4,S*5,S*1,5*2 : Paint S*4,S*5
Ellipse S*1 0,S*5,S,S*2 : Paint S*10,S*5
Ellipse S$*7,S*10,S*5,S*3 : Ellipse S*7,S*9,S*4,S : Paint S*1 1,S*1
Ink G+1 : Bar S*3,S8S*7 To S*13,S*9
Rem Now grab them as Objects
Get Bob G+N,0,0 To S*16-1 ,S*1l6-1
Rem Clear them from the screen
Cls 0,0,0 To S*16,S5*16
Next G
F$=Fsel$ ("*.Abk"," ","Save your images")
Rem Save Objects in bank 1
If F$<>0
Save F$,1
End If

Loading memory banks
Once saved, memory banks need to be retrieved and loaded, ready for use. AMOS Professional makes this process
very easy too.

LOAD

instruction: load one or more banks into memory
Load "filename"

Load "filename" ,bank number

Remember it has been suggested that memory bank filenames should have the following extensions, acting as
reminders for human eyes, and identification flags for computer searches:

05.09.04

Memory Banks

"filename.Abk" to indicate a single AMOS Professional memory bank
"filename.Abs" for a file containing a group of several memory banks.

These identifiers can be very useful when employed with certain instructions, as follows:

E> Rem Load an Object bank from current disc
Load Fsel$ ("*.Abk","™ ","Load an Object bank")
List Bank : Rem List bank details on screen

As can be seen, the LOAD command will load the selected memory bank directly from the appropriate disc file. An
optional destination bank number can be added after the filename to be loaded, but if it is omitted, or given the
number zero, data will be re-loaded into the same bank numbers from which it was originally saved. Any current
information in these existing banks will be completely lost!

Object and Icon files are treated slightly differently. If the bank number is greater than zero, any additional images
will be added to the end of the existing bank of images.

Saving and loading memory blocks

BSAVE
instruction: save an unformatted memory block
Bsave file$,start To end

A block of memory between a specified start and end location can be saved into a specified file on disc. For
example:

Bsave "Test",Start(5) To Start(5)+Length(5) : Rem Save memory bank 5

The above example would save the data in memory bank number 5 to a suitable disc. The difference between this
file and a file saved as a normal memory bank is that while SAVE causes a special bank header to be written,
containing information about the bank, this header is not written for a file when BSAVE is used. This means that
LOAD cannot be used for this type of file. It is also not suitable for Object banks.

BLOAD

instruction: load block of binary data into bank or address
Bload file$,bank number

Bload file$, address

The BLOAD instruction loads a file of binary data into memory. It does not alter the data in any way. To load this
data into a memory bank, the bank must first be reserved, otherwise an error will be generated. Also note that files
to be loaded must not be any larger than the reserved bank, or other areas of memory will be corrupted.

The file of data can also be loaded from disc into a specified address, using BLOAD.

05.09.05

Memory Banks

Deleting memory banks

During the course of a program, it may be necessary to define temporary memory banks for specific purposes. For
instance, a title screen may need to be enhanced by an animation sequence or some background music. Since this
data would only be needed at the beginning of the program, it would serve very little purpose to hold it in memory
permanently, and the extra memory space could be better used for additional graphics and sound in the actual
program. AMOS Professional allows you to delete memory banks directly from inside your programs.

The Amiga's memory system is notoriously wasteful, so care should be taken not to overuse this technique,
otherwise although the CHIP FREE and FAST FREE functions may insist that there is plenty of memory available,
you can still run out! If this should happen, it would be necessary to quit the program and re-start the Amiga, but

providing you are aware of the potential problem and provided that memory banks are kept as small as is practical,
all should be well.

ERASE
instruction: clear a single memory bank
Erase bank number

The ERASE command clears the memory space used by the specified bank number, and returns this memory to the
main program, for future use. For example:

E> Reserve as Chip Work 5,1000: Rem Reserve temporary work bank 5

Print "Free Chip Memory = ";Chip Free

Wait Key

Erase 5

Print "There is now ";Chip Free; "available bytes."
ERASE ALL
instruction: clear all current memory banks
Erase All

This command is used to erase all memory banks that are assigned to the current program, quickly and completely!

Memory banks allocated to certain types of computer games can often become much larger than the actual program
listings. In this case, it is sensible to store all Objects in separate files on disc, and only load them into memory when
they are specifically needed in the game. This dramatically reduces the size of program files and makes it very easy
to change the Objects independently of the main routines. It also allows the same Objects to be used for several
different programs.

In order to exploit this system, all the memory banks used by the program need to be carefully erased before the
program is saved to disc, otherwise masses of useless data could be stored as part of the program listing. Use the
ERASE ALL command carefully to save large amounts of valuable disc space.

05.09.06

Memory Banks

ERASE TEMP

instruction: clear temporary memory banks
Erase Temp

This instruction is used to erase all of the temporary work banks from the current program. Any permanent data
banks used for holding Sprites, music or samples will be completely unaffected. For example:

E> Reserve As Data 5,1000: Rem Reserve 1000 bytes of permanent data
Reserve As Work 6,1000: Rem Reserve 1000 bytes of temporary workspace
Reserve As Chip Work 7,2000: Rem Reserve 2000 bytes of chip memory
Erase Temp
List Bank

BANK SHRINK
instruction: reduce the size of a bank to new length
Bank Shrink bank number To length

This instruction does not erase a bank at all, but shrinks it! BANK SHRINK will not work with Object or Icon
banks, but it is used to reduce the length of a previously reserved memory bank to the specified smaller length. The
excess memory will be returned for use by the main program without complications.

This feature is very useful if you create a bank by poking it into memory, and wish to save it with a more suitable
size. For example:

E> Reserve As Data 10,1000000: Rem Very large bank
Poke$ Start(10)-8,"My Bank" : Rem Rename bank 8 bytes
Poke$ Start (10),"This is a small bank!"™ : Rem Poke some data
Bank Shrink 10 To 100: Rem Shrink bank to 100 bytes
Save "My Bank.Abk",10

Swapping banks

BANK SWAP
instruction: swap over two memory banks
Bank Swap first bank number, second bank number

The BANK SWAP command switches over the memory pointers assigned to a pair of selected banks, so that the
first bank is assigned to the second bank's memory block and the second bank grabs the locations used by the first.

Note that the items held in these banks are completely unaffected by this operation, and the only thing that changes
is the number and type of the memory bank to which the items are assigned.

05.09.07

Memory Banks

BANK SWAP is commonly used in conjunction with Objects, Icons and music banks. For example, it can be used
to instantly flick between the images in an Icon bank and an Object bank, like this:

X> Load "Objects.Abk" : Rem Please use your own filename
Load "Icons.Abk" : Rem Select appropriate filename
Bank Swap 1,2 : Rem Banks 1 and 2 normally used for Sprites and Icons

Another possibility is to store several different music banks in memory, and swap them as required.
Listing banks on the screen

LIST BANK
instruction: list all current banks in memory
List Bank

The LIST BANK instruction is used to provide a complete list of all the banks that are available from the current
program. Information about the banks is listed in the following order:

« The bank number, ranging from 1 to 65536

« A single letter indicating the type of bank, with "F" for Fast or "C" indicating Chip Ram.

« The name of the bank, held in a string of eight characters. Please note that Object banks are identified with the
letters "Sprite", even though the same images can be used equally well for Sprites or Bobs.

« The address of the start of the bank in memory, using hexadecimal notation.

The length of the bank in normal decimal format. In the case of "Sprite" or "Icon" banks, the number of

images in the bank will be given instead.

LIST BANK will result in the following sort of report appearing on the screen:

1-C- SpritesS:C61298 L:0000005
3-C- Music S:C60E80 L:0001000
6-F- Work S:100000 L:0010000

Memory bank functions
AMOS Professional provides a full range of memory bank functions, which are used to provide information about
the status of available banks.

LENGTH
function: return the length of a memory bank
length=Length(bank number)

The LENGTH function is used to find the size of the bank whose number is specified in brackets. Normally, this is
measured in bytes, but if the bank contains Objects or Icon data, the number of images in that bank will be given.

05.09.08

Memory Banks

A value of zero is returned for any bank that has not been defined. For example:

E> Load Fsel$("*.Abk","™ ","Load an Object bank") : Rem Bank 1
Print "There are ";Length(l);" images available."
START

function: return the address of a memory bank
address=Start(bank number)

Use the START function to reveal the address of the memory area allocated to a bank, whose number is specified in
brackets. The address will usually remain fixed for the duration of a program, but it can be changed by a BANK
SWAP command.

If the specified bank number does not exist, AMOS Professional will give a "Bank not reserved" error report. This
can be avoided by checking the status of a bank with the LENGTH function, like this:

E> If Length(N)>0: Rem give N a suitable bank number
Print "Address of the bank is ";Start (N)
Else
Print "This bank does not exist!"
End If

The FAST FREE and CHIP FREE functions that are used to find the amount of relevant free memory have already
been explained. These should not be confused with the FREE function, which reports the amount of free memory in
the variable area.

Grabbing accessory program memory banks

Any memory banks that are used by an accessory are independent from the main program. Existing AMOS users
will find that the system for grabbing memory banks has been greatly enhanced for AMOS Professional
programmers.

The PRG UNDER command is used to check whether a program is accessible "under" the current program, and if
all is well, its memory banks can be grabbed for the current program. As many different programs as memory
allows can be run using the PRUN command, and full details of these commands as well as communication between
programs is explained in Chapter 11.4. Here are the available bank-grabbing instructions and functions:

BLENGTH
function: return the length of a memory bank from a previous program
length=Blength(bank number)

This function is used to get the length of the specified bank number from a previous AMOS Professional program, if

this is possible. A value of zero will be returned if the specified bank has not been defined in the previous program,
or if there is no previous program accessible at all (PRG UNDER= 0).

05.09.09

Memory Banks

BSTART
function: return the address of a memory bank from a previous program
address=BSTART (bank number)

Similarly, the BSTART function will give the address of the specified memory bank from a previous program, if
possible. An error will be returned if no such bank has been reserved.

BGRAB
instruction: grab a memory bank used by the previous program
Bgrab bank number

This command is used to grab a memory bank from the previous program. The selected bank is erased from its
former program and appropriated to the current program's list of memory banks. If a selected bank number already
exists in the current program, then it will be erased before being replaced by the grabbed bank. However, a grabbed
bank is not automatically replaced at its original location. This must be achieved using a BSEND instruction, which
is explained next.

If the bank which is specified to be grabbed does not exist a "Bank not reserved" message will be generated.

BSEND
instruction: transfer a memory bank from the current program to the previous program
Bsend bank number

This command is the exact opposite of the BGRAB instruction. The specified bank is erased from the current
program list of banks, and appears in the list of banks belonging to the previous program. If a bank already occupies
this position in the previous program, it will be erased. Both the BGRAB and BSEND commands are very fast, and
blocks of data are not reserved first.

Here is an example of how to grab memory banks safely. The example lists all of the banks of the previous program
before they are grabbed, and it should be noted that the name of the bank is located eight bytes before the BSTART
address:

X> If Prg Under : Rem Check availability of a previous program
For B=1 To 1000: Rem Check the first 1000 banks!
If Blength (B)

Print "Bank number:";B;" found. Name: ";Peek$ (Bstart(B)-8,8)
Bgrab B: Rem Grab the bank
End If
Next
End If

Automatic bank grabbing
This feature is a unique bonus! It allows memory banks to be passed between programs completely automatically.
You could be in the middle of writing an arcade game, call up the

05.09.10

Memory Banks

Object Editor, change the Bobs in the game, and return to the creation of your program routines bringing the new
Bobs with you!

No loading and saving are necessary, everything is handled by AMOS Professional, and your working life is made
that much easier! An example of this technique is featured in Chapter 13.7.

Creating your own utilities

The following functions are provided in order to provide developers with full access to the inner workings of the
AMOS Professional system. They are definitely not intended for the casual programmer, but they do allow advanced
users to create customised AMOS Professional utilities.

SCREEN BASE
function: get screen table
address=Screen Base

This function returns the base address of the internal table that is used to hold the number and position of AMOS
Professional screens.

ICON BASE
function: get Icon base
address=Icon Base(number)

ICON BASE returns the address of the Icon whose number is specified in brackets. The format of this information is
exactly the same as for the SPRITE BASE function, explained below.

SPRITE BASE
function: get Sprite table
n=Sprite Base(number)

SPRITE BASE provides the address of the internal data list for whichever Sprite number is specified in brackets. If
the Sprite does not exist, then the address of the table is returned as zero. Negative values for the Sprite number will
return the address of the optional mask associated with that Sprite, and the number that is returned can contain one
of three possible values, as follows:

« A negative number indicates that there is no mask for this Sprite.

« Zero indicates that the specified Sprite does have a mask, but it is yet to be generated by the system.

« A positive number indicates the address of the mask in memory. The first "long word" of this area holds the
length of the mask, and the next gives the actual definition.

05.09.11

Setting up Screens

This Chapter explains how AMOS Professional screens are created and made ready to display the wonders of text,
graphics and special effects.

Think of your television set or monitor as a glass window, through which you can view whatever AMOS
Professional displays on its own "screen". The screen used to show AMOS Professional images is not the same as
your TV display, because an AMOS Professional screen can be changed in many different ways, while the glass
window of the TV set remains firmly fixed!

So far in this User Guide, everything has been displayed on a single AMOS Professional screen that appears in the
glass window of your TV set. As an aid to understanding the theory of different screens, and to see the theory put
into practice, make sure that you use the ready-made HELP programs as you read through this Chapter.

The AMOS Professional screens

The default screen

Whenever an AMOS Professional program is run, a screen area is automatically set up to display the results of that
program. This is known as the "default" screen, and it forms the standard display area that is used for all normal
drawing operations. The default screen is given the identity number zero. The individual dots on the screen that make
up the image are known as "pixels", and screen zero is 320 pixels wide, 200 pixels high and it can display 16
different colours.

Additional screens

Apart from the default screen, seven more screens can be set up and used for AMOS Professional programs, and
each of these new screens is given an identity number from 1 to 7. When a new screen is set up, it has to be
"opened", and when this is done, its individual width, height, number of colours and pixel size is also defined.

Screen resolution

Although the default screen is 320 pixels wide, this "resolution" can be doubled to 640 pixels across the screen.
When the screen is 320 pixels wide it is in low resolution, or "Lowres", for short. If this is changed to 640 pixels
wide, the screen is in high resolution, known as "Hires".

Defining a screen

SCREEN OPEN
instruction: open a new screen
Screen Open number,width,height,colours,pixel mode

To open a new screen give the SCREEN OPEN command, followed by these parameters:

Number is the identification number of the new screen, ranging from 0 to 7. If a screen with this number already
exists, it will be completely replaced by this new screen.

06.01.01

Setting up Screens

Width sets up the numbest- of pixels that will make up the width of the new screen. There is no problem in opening
a screen that is wider than the physical limit of the television or monitor display, and extra-wide screens can be
manipulated by the SCREEN OFFSET command. The widest possible screen is 1024 pixels across, from zero to
1023.

Height holds the number of pixels that make up the height of the screen. Like the width parameter, this can be larger
than the visible screen height to a maximum of 1023 pixels, and scrolled into view. Screens with oversized widths
and heights can be used with all of the normal screen techniques which are explained later.

Colours sets the number of colours to be used for the new screen. The choice for this number is normally between
2,4,8,16 or 32. There are two special sorts of screens that can make use of 64 colours (Extra Half Bright mode
screens), and 4096 colours (Hold And Modify mode screens), and these modes are explained at the end of this
Chapter.

Pixel mode is a choice of the width of the pixel points on the screen. Lowres is the normal status, allowing 320
pixels to be displayed across the screen, at any one time. Hires halves the width of each pixel, and so allows 640 to
be displayed.

LOWRES
function: set screen mode to 320 pixels wide
Screen Open number,width,height,colours,Lowres

HIRES
function: set screen mode to 640 pixels wide
Screen Open number,width,height,colours, Hires

When the default screen is automatically opened, screen 0 is the equivalent to the following setting:
X> Screen Open 0,320,200,16,Lowres

To open screen number 1 as an oversize high-resolution screen with eight colours, you would use something like
this:

D> Screen Open 1,600,400,8,Hires
This routine opens all eight available screens and brings them into view:

D> Curs Off : Cls 13: Paper 13

Print : Centre "Hello, I'm SCREEN O"
For S=1 To 7
Screen Open S,320,20,16,Lowres
Curs Off : Cls S+2 : Paper S+2
Centre "And I am SCREEN"+Str$ (S)
Screen Display S,,50+35*25,,8

Next S

06.01.02

Setting up Screens

Here is a table which lists the different screen options, along with an indication of the amount of memory a standard
size screen will consume.

Colours Resolution Memory Notes

2 320x200 8k PAPER=0 PEN=1 no FLASH Cursor=l
2 640x200 16k as above

4 320x200 16k PAPER=1 PEN=2 FLASH=3 Cursor=3
4 640x200 32k as above

8 320x200 24k PAPER=1 PEN=2 FLASH=3 Cursor=3
8 640x200 48k as above

16 320x200 32k default setting

16 640x200 64k

32 320x200 40k

64 320x200 48k Extra Half Bright mode

4096 320x200 48k Hold And Modify mode

Controlling screens

SCREEN CLOSE
instruction. erase a screen
Screen Close number

Use the SCREEN CLOSE command to erase a screen and free the memory it was using for other programming
needs. Simply specify the screen number to be deleted.

DEFAULT
instruction: re-set to the default screen
Default

The DEFAULT instruction closes all currently opened screens and restores the display back to the original default
setting.

AUTO VIEW ON

AUTO VIEW OFF

instructions: toggle viewing mode on and off
Auto View On

Auto View Off

When SCREEN OPEN is used to create a new screen, the screen is usually displayed at once. This may be
inconvenient during the initialisation stages of a program, in which case the AUTO VIEW OFF command can be
used to disable this automatic display system. Screens can then be updated at a convenient point, using the VIEW
instruction. To re-activate the automatic screen updating system, use the AUTO VIEW ON command.

06.01.03

Setting up Screens

VIEW
instruction: display current screen setting
View

When the AUTO VIEW OFF instruction is engaged, VIEW can be used to display any changes that have been made
to the current screen settings, and they will be displayed at the next vertical blank period following the VIEW
command.

Moving a screen

Once a screen has been opened, it can be positioned and moved anywhere on the television display. This means that
screens can be made to bounce, slip, slide, flip over, sink out of sight and behave in all sorts of bizarre ways. This
also means that screens can overlap or be displayed above one another, and so several different screen modes can be
shown at once in separate areas of the display.

SCREEN DISPLAY

instruction: position a screen

Screen Display number

Screen Display number,x,y, width,height

To position a screen, the SCREEN DISPLAY command is used, followed by these parameters:

Number refers to the number of the screen to be displayed, from 0 to 7. All or any of the other parameters can be
omitted, but the relevant commas must be included.

The x,y-coordinates are given as "hardware" coordinates, which refer to physical positions on the television screen,
not the area used by AMOS Professional screens. These set the position from which your AMOS Professional
screen will be displayed on the TV screen.

X coordinates can range from 0 to 448, and they are automatically rounded down to the nearest 16-pixel boundary.
Only the positions from 112 to 432 are actually visible on the TV screen, so avoid using an x-coordinate below 112.

Y coordinates can range between 0 and 312, but because every TV set displays a slightly different visible area, it is
sensible to keep the range between 30 and 300. A small amount of experimenting will reveal what suits your own
system.

Width sets the width of the screen in pixels. If this is different from the original setting, only a part of the image
will be shown, starting from the top left-hand corner of the screen. It will also be rounded down to the nearest 16
pixels.

Height is used to set the height of the screen in exactly the same way as the width.

If any of the optional parameters are left out, the default settings will be applied automatically.

06.01.04

Setting up Screens

For example, to display screen zero, keeping its original width and height, this line could be used:

X> Screen Display 0,112,40,,

Only one screen at a time can be shown on each horizontal line of the display, but several screens can be placed on
top of one another. If screens are placed next to each other, in other words if they are sewn together to make a
continuous display, there is one line of pixels where the screens meet that becomes "dead". This effect can be seen
by moving the mouse pointer between the Direct mode window and the Default Screen, where a line of "dead"
pixels occurs.

One way of getting over this dead zone is to create an extra-large screen that is bigger than the TV display, and then
move the visible area around inside its boundaries. When using extra-large screens, the area to be viewed is set with
the SCREEN OFFSET command.

SCREEN OFFSET
instruction: offset screen at hardware coordinates
Screen Offset number,x,y

Look at the diagram below, where the area of the visible screen is shown as a sort of "port-hole" 320 pixels wide by
200 pixels high, inside a larger AMOS Professional screen. Of course, the port- hole can be made smaller using the
SCREEN DISPLAY command.

offset
y
X

(0,0)
TV SCREEN

(320,200)
AMOS Professional Screen

The SCREEN OFFSET command is followed by the number of the screen to be displayed, then the x,y-coordinates
of the "offset", which is the point where the top left-hand corner of the visible display is to start, measured from the
top left-hand corner of the extra-large screen.

06.01.05

Setting up Screens

The visible area can be Moved around the extra-large screen by changing the offset coordinates, and some very
smooth scrolling effects are achieved. These can be used for background graphics in computer games, as well as
more serious applications like route finders or star constellations.

Manipulating screens

SCREEN CLONE
instruction: clone a screen
Screen Clone number

To create an identical copy of the current screen, and assign this new "clone" with a new screen number, use the
SCREEN CLONE command followed by the destination screen number. Here is an example of a multi-cloned
screen:

E> Screen Open 0,320,20,4,Lowres

Flash Off

Screen Display 0,,70,,
For S=1 To 7

Screen Clone S

Screen Display S,,S*20+70,,
Next S

Print "Start typing";
Do

AS=Inkey$

If AS<>"" Then Print AS;
Loop

Screen cloning is an ideal technique for two-player computer games, with each player controlling half of the visible
display area.

The clone uses the same memory area as the original screen, and will be displayed at the same place as the original.

Any of the usual screen operations can be used with the clone, such as SCREEN DISPLAY and SCREEN OFFSET.
However, because there is only one copy of the original screen data in memory, it is impossible to use the SCREEN
command with the cloned copy.

DUAL PLAYFIELD
instruction: combine two screens
Dual Playfield first screen,second screen

The DUAL PLAYFIELD mode is the equivalent of mixing together two images from separate video cameras, and is
achieved by displaying two screens simultaneously at the same x,y- coordinates. Each of the two screens can be
manipulated completely independently from one other, and this can be exploited to produce very smooth parallax
scrolling. Because the sizes of the two screens can be different, a smaller screen can be scrolled against a larger
background screen, creating the parallax effect.

06.01.06

Setting up Screens

The two components of this dual playfield are treated as any other AMOS Professional screen, and they can even be
double buffered or animated with AMAL.

To create a dual playfield screen, simply give the command, followed by the two numbers of the relevant screens,
which have already been defined using SCREEN OPEN. Both screens must have the same resolution, and there are
some restrictions on the number of colours allowed. Here is a table of the possibilities:

1st Screen 2nd Screen Resolution of both screens
2 colours 2 colours Lowres or Hires

4 colours 2 colours Lowres or Hires

4 colours 4 colours Lowres or Hires

8 colours 4 colours Lowres only

8 colours 8 colours Lowres only

The colours of these screens are taken from the palette of the first screen with colour zero being IF treated as
transparent. The first screen makes use of colours zero to 7, while the second screen uses 8 to 15. When you are
drawing to the second screen, AMOS Professional will automatically convert the colour index to the appropriate
number before using it. This means that colours zero to 7 of the second screen's palette will use colours 8 to 15 of
the first screen's palette, in ascending order.

Always make the first screen the current screen when changing the colour settings.

Remember that the automatic conversion process does not apply to assignment statements such as COLOUR or
PALETTE.

When using SCREEN OFFSET to position a dual playfield screen, always specify the first screen, and never set
screen offsets for both dual playfield screens to zero.

DUAL PRIORITY
instruction: reverse order of dual playfield screens
Dual Priority first screen, second screen

Normally, the first screen of a dual playfield is displayed directly over the second screen. To reverse this order, so
that the second screen appears in front of the first, use the DUAL PRIORITY command. Please note that this
instruction only changes the order of display, and has no effect on the screen organisation at all, so the first screen in
the parameter list is still used for all colour assignments, and with the SCREEN DISPLAY command.

Clearing, hiding and showing screens
Screens can be removed from view by permanently erasing them, or by hiding them away for later display.

CLS

instruction: clear current screen
Cls

Cls colour number

Cls colour number,x1,yl To x2,y2

06.01.07

Setting up Screens

The CLS command erases.all or part of the current screen. Used on its own, the contents of the current screen are
deleted and replaced by the current paper colour. Any windows that may have been set up will also be cleared in this
way.

By specifying the index number of a particular colour after the CLS command, the clearing operation will be carried
out using that colour.

A rectangular part of the current screen can also be cleared, leaving the rest of the screen intact. This is achieved by
adding the coordinates of the block to be filed with the specified colour, from the top left-hand corner, to the bottom
right. For example:

E> Cls: Circle 100,98,98: Cls 0,50,50 To 150,150

SCREEN HIDE
instruction: hide a screen
Screen Hide

Screen Hide number

SCREEN SHOW
instruction: show a screen
Screen Show

Screen Show number

Use the SCREEN HIDE command to remove the current screen from view. It can then be restored using a SCREEN
SHOW instruction, like this:

E> Cls : Print "I am the Current Screen" : Wait 100
Screen Hide : Wait Key
Screen Show

Any screen can be temporarily hidden, by including its index number after the SCREEN HIDE instruction. This
screen is revealed with a similar request to SCREEN SHOW, followed by the relevant screen number.

Screen priority

Because screens may be of different sizes, and because they can be displayed at various positioned on the TV by
offsets and overlaps, and because there can be up to eight electronic screens queuing up one behind the other, a
method is needed to bring any one of these screens to the front of the display.

SCREEN TO FRONT

instruction: move screen to front of display
Screen To Front

Screen To Front number

Use SCREEN TO FRONT to move the selected screen to the front of the display queue. If the screen number is
omitted after the command, then the current screen will be brought to the front.

06.01.08

Setting up Screens

SCREEN TO BACK

instruction: move screen to back of display
Screen To Back

Screen To Back number

This command is used to move a screen to the background of the display. If another screen is already there, it will
be displayed in front of the chosen screen. Again, if the screen number is omitted after a SCREEN TO BACK
command, the current screen will be relegated to the back of the display queue. Try this example:

E> Centre "Hello again, Screen 0 here"
Wait 100
Screen Open 1,320,200,2,Lowres
Centre "Excuse me, make way for Screen 1"
Wait 100 : Screen To Front 0
Screen 0
Wait 100 : Screen To Back

SCREEN
instruction: set current screen
Screen number

This command allows all graphical and text operations to be directed to the selected screen number, like this:

E> Screen Open 2,320,32,16,Lowres
Screen Display 2,,130,,
Screen 0
Plot 0,0: Draw To 320,200

If the chosen screen is outside of the current display area or is hidden, there will be no visible effect. However, any
graphics will be drawn in memory, waiting to be displayed whenever this screen comes into view, or out of hiding
after a Screen Show command.

Defining screen colours

DEFAULT PALETTE
instruction: define standard palette
Default Palette $1,$2,%3 ... $32

It is often necessary to open several screens using the same palette. To simplify this process, the DEFAULT
PALETTE instruction is used to define a standard palette which will be used by all subsequent screens created by
the SCREEN OPEN command. Colours are set using the SRGB values that are fully explained in the COLOUR
section of Chapter 6.4. Up to 32 colours may be defined, depending on the screen mode, and any colours that are not
re-set must have their appropriate commas in place. Here is an example line for eight colour screens:

D> Default Palette $000,$111,$A69,,,,,SFFF

06.01.09

Setting up Screens

GET PALETTE

instruction: copy palette from a screen
Get Palette number

Get Palette number,mask

This command copies the colours from a specified screen, and loads them into the current screen. This is useful
when data is being moved from one screen to another with a SCREEN COPY command, and the same colour
settings need to be shared for both screens. An optional mask can be added after the screen number, allowing only
selected colours to be loaded. This works in exactly the same way as a mask for a GET SPRITE PALETTE
command, and is explained in Chapter 7.1.

Screen functions
AMOS Professional provides a full range of screen functions, to monitor and exploit the current status of your
screens.

SCREEN
function: give current screen number
screen number=Screen

SCREEN can be used as a function to return the number of the screen which is currently active. This screen is used
for all drawing operations, but it is not necessarily visible.

SCREEN HEIGHT

function: give current screen height
height=Screen Height
height=Screen Height number

SCREEN WIDTH

function: give current screen width
height=Screen Width
height=Screen Width (number)

This pair of functions is used to return the height and the width of the current screen or a particular screen, if that
screen number is specified. The dimensions of the current screen can be found like this:

E> Print Screen Height
Print Screen Width

SCREEN COLOUR
function: give maximum number of colours
number=Screen Colour

06.01.10

Setting up Screens

To find the maximum number of colours in the screen that is currently active, test the SCREEN COLOUR function
now:

D> Print Screen Colour

SCIN
function: give screen number at hardware coordinates
number=SCIN(x,y)

The SCIN function (short for SCreen In) is normally used with X MOUSE and Y MOUSE to check whether the
mouse cursor has entered a particular screen. It returns the number of the screen which is underneath the selected
hardware coordinates. If there is no screen there, a negative number will be returned.

IFF screens

IFF stands for Interchangeable File Format, commonly used to pass data between computers. IFF pictures from
Dpaint are a classic example. As well as importing your own IFF drawings, AMOS Professional allows you to make
use of legally available, ready-made pictures in the public domain, for your own programs.

LOAD IFF

instruction: load an IFF screen from disc
Load Iff "filename"

Load Iff "filename",screen number

With the appropriate IFF picture files ready to be loaded on disc, this command is used to load the selected filename
to the current screen. There is an optional screen number parameter, which will open that screen for the picture. If
this numbered screen already exists, its contents will be erased and replaced by the IFF data.

SAVE IFF

instruction: save an IFF screen to disc
Save Iff "filename"

Save Iff "filename",compression mode

The SAVE IFF command saves the current screen as an IFF picture file with the selected filename onto disc. Certain
data is automatically added to this IFF file, which stores the present screen settings, including any SCREEN
DISPLAY, SCREEN OFFSET, SCREEN HIDE and SCREEN SHOW. This will be stored and recognised by
AMOS Professional whenever this file is loaded again, so that the IFF screen will be displayed exactly as it was
saved. Please note that this data will be ignored by other graphics packages, such as Dpaint 3, also that it is not
possible to save double buffered or dual playfield screens with this command.

An optional parameter can be added after the filename, which selects whether or not the IFF file is to be compacted
before it is saved. A value of 1 specifies that the standard AMOS Professional compression system is to be used,
whereas a zero saves the picture without any compression.

06.01.11

Setting up Screens

Extra Half Bright mode
The colour of every point on the screen is governed by a value held in one of the Amiga's colour registers. Each
register can be loaded from a selection of 4096 different colours.

There is no point in wasting the computer's memory with dozens of available colours, if only two of them are going
to be employed for some simple text. On the other hand, there is no point being restricted to 16 or 32 colours if
images need to be as realistic as possible. There are two special screen modes that change the number of colours for
use, Extra Half Bright mode (EHB), and Hold And Modify mode (HAM).

Extra Half Bright mode doubles the number of available colours to 64. This is achieved by creating two colours from
each of the Amiga's 32 colour registers. Colour numbers 0 to 31 are loaded straight from one of the colour registers,
as normal. But the EHB mode creates an extra set of colours alongside the originals, by looking at their values and
dividing them in half. This makes the new set of colours exactly half as bright as the originals. The new set of
colours uses index numbers from 32 to 63.

Obviously, you can take full advantage of EHB by loading the 32 colour registers with the brightest colours
available, so that pastel shades are generated automatically. Alternatively, if you needed to create specialised
graphics, like an old-fashioned photograph for example, you might want to restrict the 32 colour registers to reds,
greys and browns.

Using EHB mode makes no difference at all to any other parts of your programming, and EHB screens are treated in
exactly the same way as the default screen. It is also possible to create Bobs in this mode. Here is a simple example
of EHB colours.

E> Screen Close 0
Screen Open 2,320,167,64,Lowres : Flash Off
For C=1 To 32

Ink C

Bar 0, (C-1)*5 To 160, (2+C-1)*5

Ink C+32

Bar 160, (C-1)*5 To 319, (2+C-1)*5
Next C

Hold And Modify mode
For an artist to carry around 4096 tubes of different coloured paint would be expensive and stupid, so an artist makes
use of common colours, and mixes them together to create the exact shade needed. Computers use exactly the same

process, allowing the programmer to hold on to an existing colour and modify it very slightly, time and time again.
This is the theory behind the Amiga's Hold And Modify (HAM) mode.

HAM mode splits up colour values into four separate groups. Colours 0 to 15 are normal, and the others exploit the
way that all colours are made up from basic Red, Green and Blue components.

06.01.12

Setting up Screens

It must be stated that HAM mode is difficult to use, but AMOS Professional is able to exploit its full potential. This
is valuable for displaying digitised colour pictures, either grabbed from video images or created using special
packages such as Dpaint 4. To open a HAM screen ready to display all 4096 available colours, the following line
could be used:

E> Screen Open 0,320,256,4096,Lowres

All text and graphics operations may be used directly with a HAM screen, and it can be manipulated by the normal
SCREEN DISPLAY and SCREEN OFFSET commands.

Do set the first point of each horizontal line to a colour numbered from 0 to 15, which will serve as the starting
colour for all shades on the current line. To prevent unwanted fringe colours when SCREEN COPY is used, see that
the screen's border zone also uses a colour from 0 to 15. This ensures that HAM screens are re-drawn at a new
position using their original colours.

Do not try to scroll a HAM screen horizontally, unless you wish to see fringes of spurious colour at the side of the
picture. This problem does not occur with vertical scrolls.

Interlaced screens
Interlaced mode is perfect for displaying pictures, but is not recommended for much else.

LACED
reserved variable: return a value in conjunction with screen resolution
Screen Open number,width,height,colours, Laced-+resolution

LACED is a reserved variable which holds the value of 4. It is used in addition to either the Hires or Lowres
parameters when opening a screen, like this:

E> Screen Open 0,320,200,16,Laced+Lowres

Interlaced screens have double the number of vertical lines, which is excellent for graphic displays. Unfortunately
they take twice as long to update, which is no good at all for fast-action games! Interlaced screens will only give
flicker-free results if a "multi-sync" monitor is being used. Also certain TV sets and monitors do not take kindly to
excessive switching between interlaced and normal screens.

All of the usual operations may be used with interlaced screens, such as SCREEN DISPLAY, SCREEN OFFSET,
and so on, but for technical reasons interlacing is not allowed during copper list calculations. As soon as the last
interlaced screen has been closed, the entire display returns to normal mode.

SCREEN MODE
function: return screen mode
value=Screen Mode

This simple function is used to report the mode of the current screen. If the screen is LACED, 4 or $8004 will be
returned. If the screen is LOWRES, a value of $0 is given. For a HIRES screen, $8000 will be returned.

06.01.13

Using Screens

IF you are familiar with the screen concepts set out in the last Chapter, this is where you make AMOS Professional
screens come alive. This Chapter explains how to manipulate your screens, and we have provided ready-made
demonstrations of the techniques on disc, complete with led notes in their listings.

Copying screens

Any rectangular part of a screen can be copied and moved on the current screen or to any other screen, time and
time again, at great speed. Copying between the "physical" and "logical" screens is fully discussed in Chapter 7.2,
along with detailed explanations of double buffering.

SCREEN COPY

instruction: copy an area of a screen

Screen Copy source number To destination number

Screen Copy source number,x1,y1,x2,y2 To destination number,x3,y3
Screen Copy source number,x1 ,y1 ,x2,y2 To destination number,x3,y3,mode

SCREEN COPY is the most important screen command of all. It can be used to achieve classic screen techniques
like "wiping" from one screen to another, as well as providing all sorts of special effects. At its simplest level, use
this command to copy the whole contents of one screen to another screen. Simply give the number of the source
screen that holds the image to be copied, which can be a logical or physical screen. Then determine the number of
the destination screen, which is where you want the image copied to. For example:

X> Screen Copy 1 To 2

Exact sections of screens can be copied by giving the coordinates of the top left-hand and bottom right-hand corners
of the areas to be copied, followed by the number of the destination screen and the coordinates where the copy's top
left-hand corner should be placed. If the destination screen number is omitted, the copied image will appear at the
new coordinates on the current screen. For example:

X> Circle 50,50,10 : Wait 50
Screen Copy 0,20,20,70,70 To 0,100,100

Note that there are no limits to these coordinates, and any parts of the image that fall outside of the current visible
screen area will be clipped automatically.

There is also an optional parameter which selects one of 255 possible blitter modes for the copying operation. These
modes affect how the source and destination areas are combined together on the screen, and are set using a bit-
pattern in the following format:

Mode Bit Source Bit Destination Bit
4 0 0
5 0 1
6 1 0
7 1 1

06.02.01

Using Screens

Please note that the bottom four bits in the pattern are not used by this instruction, and should always be set to zero.
Also, that SCREEN COPY combines the source and destination graphics using blitter areas B and C, but not area A.
To short-circuit the mass of all 255 options, here is a list of five of the most common modes, along with their binary
bit-map patterns, followed by a ready-made working example to examine:

Mode Bit-pattern Effect

REPLACE %11000000 Replace destination graphics with a copy of the
source image. (Default mode.)

INVERT %00110000 Replace destination graphics with an inverse
video image of the source.

AND %$10000000 Combine together the source and destination
images, with a logical AND operation.

OR %$11100000 Overlap the source image with the destination
graphics.

XOR %$011000000 Combine together an inverse source image and

destination graphics, with an Exclusive OR.

Examine that demonstration program, and use the mouse pointer to copy the image anywhere on screen, with a
single click of the left mouse button. Keep the button held down and move the mouse pointer to see the full potential
of SCREEN COPY, then press any key to call up the next mask and repeat the process.

Scrolling the screen

DEF SCROLL
instruction: define a scrolling screen zone
Def Scroll number,x1,yl To x2,y2,horizontal value, vertical value

Using the AMOS Professional system, you are able to define up to 16 different scrolling screen zones, and each one
can have an individual pattern of movement. Simply follow your DEF SCROLL command with the number from 1
to 16 of the zone you are setting up. Then give the coordinates of the area of the zone to be scrolled, from the top
left-hand corner to the diagonally opposite bottom right-hand corner. Finally, give this zone a scrolling pattern by
setting the number of pixels to be shifted horizontally, and the number of pixels to be shifted vertically during each
scrolling operation. Positive horizontal values will cause a shift to the right whereas negative values will shift the
zone towards the left of the screen. Similarly, positive vertical values will scroll downwards and negative values
cause an upward scroll.

SCROLL
instruction: scroll a screen zone
Scroll zone number

To scroll a screen zone already specified with a DEF SCROLL setting, use SCROLL followed by the zone number
you require.

06.02.02

Using Screens

Enlarging and reducing the screen

7Z00M
instruction: change size of part of screen
Zoom source number, x1 ,y1 ,x2,y2 To destination number,x3,y3,x4,y4

This one command allows you to produce a range of remarkable effects that change the size of the image in any
rectangular area of the screen. Depending on the relative sizes of the source and destination areas, images can be
magnified, shrunk, squashed and stretched as you wish. ZOOM is qualified by the number of the screen from where
your source picture will be taken, followed by the coordinates of the top left-hand corner and bottom right-hand
corner of the area to be grabbed, After the TO structure, give the, number of the destination screen and the new
coordinates of the area which is to hold the zoomed image. AMOS Professional will automatically re-size the
image.

The LOGIC function may be used to grab an image from the appropriate logical screen, instead of specifying a
physical screen number. In the same way, you are allowed to deposit a zoomed image to a logical screen. This is
explained below.

Physical and logical screens

When you watch the moving images shown at the cinema or on video, you are watching an illusion. Graphical
animation in the movies is created by a fast sequence of still pictures known as frames. Television screens do not
display moving images either. They fool the brain and the eye by updating still images on the screen, fifty limes
every second.

In order to create really smooth moving graphics, your computer has to complete all new drawing operations in less
than one fiftieth of a second. So the AMOS Professional programmer must achieve this speed, otherwise programs
will suffer from an ugly flicker. The problem is solved by using a technique that switches between screens during
drawing operations. This is how it works.

Think of the actual area where images are displayed as the "physical" screen. Now imagine that there is a second
screen which is completely invisible to the eye, where new drawing operations are executed. Call that the "logical"
screen. Flicker-free movement is achieved by switching between the physical and logical screen.

The physical screen is displayed as usual, then once the new image has been drawn on the logical screen, they are
swapped over. The old physical screen becomes the current logical screen, and is used to receive the drawing
operations that will make up the next image. This process is completely automatic when using the DOUBLE
BUFFER command, which is fully explained in Chapter 7.2.

SCREEN SWAP

instruction: swap over logical and, physical screens
Screen Swap

Screen Swap number

06.02.03

Using Screens

This is the command that swaps over the physical and logical screens, so that the displays are instantly switched
between the two of. them. If the DOUBLE BUFFER command has been engaged, this process is automatic.

LOGBASE
function: return the address of logical screen bit-plane
address=Logbase(plane)

The LOGBASE function allows expert programmers to access the Amiga's screen memory directly. The current
screen is made up of six possible bit-planes, and after LOGBASE has been called, the address of the required plane
is returned, or zero is given if it does not exist.

PHYBASE
function: return the address of the current screen
address=Phybase(plane)

PHYBASE returns the address in memory of the specified bit-plane number for the current screen. If this plane does
not exist, a value of zero is given. For example:

X> Loke Phybase(0),0 : Rem Poke a thin line directly onto screen

PHYSIC

function: return identification number for physical screen
number=Physic

number=Physic(screen number)

The PHYSIC function returns an identification number for the current physical screen. This number allows you to
access the physical image being displayed by the automatic DOUBLE BUFFER system, and the result of this
function can be substituted for the screen number in ZOOM, APPEAR and SCREEN COPY commands. The
PHYSIC identification number of the current screen will be returned, unless an optional screen number is specified.

LOGIC

function: return identification number for logical screen
number=Logic

number=Logic(screen number)

Use the LOGIC function to get an identification number for the current logical screen, or use an optional screen
number to specify a particular logical screen. The identification number that is returned can now be used with the
Z0OOM, APPEAR and SCREEN COPY commands, to change images off screen, without affecting the current
display.

Screen synchronisation

It has already been explained that the image on your screen is updated fifty times every second. A single update
consists of an image drawn by an electron beam scanning across every line of the screen until it reaches the bottom
right-hand corner, at which point the beam switches off

06.02.04

Using Screens

and starts scanning again at the top left-hand corner of the screen. The period between the completion of one screen
and the beginning of the next update is known as the "vertical blank period", or VBL for short. This is the period
when AMOS Professional jumps in to perform important tasks like moving Bobs and swapping screens.

AMOS Professional is so efficient, it considers a 50th of a second to be a huge waste of time, and is eager to get on
with any other tasks that need doing. This means that your programs could get out of synchronisation with what is
actually happening on screen, so there are situations when AMOS Professional must be instructed to wait for the
next vertical blank period, in order keep in step.

WAIT VBL
instruction: wait for next vertical blank period
Wait Vbl

This simple command can be included to achieve perfect synchronisation, and is especially useful after a SCREEN
SWAP.

Screen compaction

Naturally you will want to exploit the most spectacular images in your programs, but the idea becomes less attractive
because of the large amounts of program memory that get used when a graphical screen is used. With a single, 64
colour, full-size screen consuming 60k of RAM, the AMOS Professional programmer needs to crunch the data that
makes up screen graphics, pack it into an acceptable amount of memory and then unpack it when necessary.

SPACK

picture compactor extension: pack a screen

Spack screen number To bank number

Spack screen number To bank number x1,y1,x2,y2

This command stands for "screen pack", and it supports all standard graphic modes, including HAM. Memory is
crunched to a fraction of its original requirement, and in its simplest form you only need to define the screen number
that holds the source of your image (from 0 to 7), and the number of the memory bank where you want the packed
image deposited (from 1 upwards), for example:

X> Spack 7 To 20

If the selected memory bank does not already exist, AMOS Professional will reserve it automatically before packing
in the screen data, which includes everything about the image including its mode, size and any offsets or display
settings. This means that when the data is unpacked, the image will be re-created in its original state. Your new
memory bank will be stored in fast memory if available, and will be saved along with your Basic program. After
SPACK has been called, you can determine the size of your crunched screen with the LENGTH function.

06.02.05

Using Screens

If you only want to pack a part of any screen and not bother about the remaining area, simply add the coordinates of
the top left and bottom right-hand corners of the section to be packed. Note that all x-coordinates will be
automatically rounded to the nearest 8 pixel boundary.

To provide you with the maximum memory saving, AMOS Professional will try and SPACK your images using
several alternative strategies. It will then choose the method that consumes the least amount of memory. You are
requested to be patient during the five or six seconds that this process takes, and are assured that unpacking takes
less than a second, so your programs will run smoothly. If a one second delay is not acceptable to you, please see
the alternative system that uses GET CBLOCK and PUT CBLOCK in Chapter 7.7.

PACK

picture compactor extension: pack screen data
Pack screen number To bank number

Pack screen number To bank number x1,y1,x2,y2

The PACK command is slightly different from SPACK, because it only compresses the image data. This means that
the image must always be unpacked into an existing screen. Also there will be a slight flicker when the image is
unpacked, unless the screens have been double buffered, so it is better to use single buffered screens here. Screen
numbers, memory bank numbers and optional coordinates for smaller sections of the screen to be packed are used in
exactly the same way as with the SPACK command, and x-coordinates are rounded to the nearest 8 pixel boundary
too.

SPACK is fully compatible with the standard AUTOBACK system explained in Chapter 7.2, so it is easy to
combine compacted images with moving screens. Images can even be unpacked behind existing Bobs, so it is
possible to exploit this command together with SCREEN OFFSET to create superb scrolling backgrounds.

UNPACK

picture compactor extension. unpack a compacted screen
Unpack bank number

Unpack bank number,x,y

Unpack bank number To screen number

As you might expect, this is used to unpack crunched images. Using double buffered screens will give smooth
results, otherwise unpacking may get messy, and always make sure that the destination screen is in exactly the same
format as the packed picture or an error will be generated.

To unpack screen data at its original position, state which memory bank is to be unpacked, like this:

X> Unpack 15

To re-draw the packed image starting from new top left-hand corner coordinates, include them

06.02.06

Using Screens

after the bank number. If the new image does not fit into the current screen, the appropriate error message will
appear.

The other form of the UNPACK command is open a screen and unpack the data held in the selected bank to that
screen. For example:

X> Unpack 15 To 1

If the screen you select already exists, its image will be replaced by the newly unpacked picture within one second.

06.02.07

Screen Effects

The AMOS Professional programmer expects to achieve superb visual effects with simple, economic commands.
Classic cinematic and video techniques are readily available, as well as more spectacular routines that are only made
possible by the power of the computer.

When the image of one screen dissolves and melts into the image of another screen, various "fade" effects are
produced.

APPEAR

instruction: fade between two screens

Appear source screen To destination screen, pixels

Appear source screen To destination screen, number pixels, range

This command creates a fade between two pictures. Choose the number of the source screen where the original
picture comes from, then the number of the destination screen whose picture it fades into. LOGIC and PHYSIC
functions can be substituted for screen numbers, if required.

Next determine a value that will cause the desired effect, by setting the number of pixel points on the screen, ranging
from 1 pixel all the way up to every pixel in the display.

Normally APPEAR affects the whole of your screen area, but there is an optional parameter that causes only part of
the screen to be faded. Because screens are drawn from top to bottom, set the area to be faded by adding the range
of the number of pixels from the top of the screen. For example:

E> Load "AMOSPro Tutorial:Objects/Bobs.Abk"
Flash Off : Get Bob Palette
Paste Bob 100,0,1
Wait 100
Screen Open 1,320,90,16,Lowres
Flash Off : Get Bob Palette
Appear 0 To 1,1,28800

That example fades the top part of your default screen into the newly opened Screen 1. Obviously, the appearance of
fades will vary, depending on the screen mode being used.

FADE

instruction: blend colours to new values
Fade speed

Fade speed,colour list

Fade speed To screen number

Fade speed To screen number,mask

The classic "fade to black" movie effect takes the current palette and gradually fades all values to zero. Set the speed
of the fade by choosing the number of vertical blank periods between each colour change. Try this:

E> Flash Off : Curs Off
Centre "GOOD NIGHT"
Fade 5

06.03.01

Screen Effects

Fade effects are executed using interrupts, so it is sensible to wait until the fade has ended before going on to the
next program instruction. The length of wait required can be calculated with this formula:

wait = fade speed * 15
So that last example is sure to work with the rest of your program if the third line is changed to this:
E> Fade 5 : Wait 75

By adding a list of colour values, the fade effect will generate a new palette directly from your list, and it is used
like this:

E> Flash Off : Curs Off
Centre "RED SKY AT NIGHT"
Fade 10,$100,S$F00,$300
Wait 150

Any number of new colours can be set up like this, depending on the maximum number allowed in your current
screen mode. Any settings that are omitted will leave those colours completely unaffected by the fade, as long as you
include the right number of commas. For example:

E> Fade 5,,$100,,,$200,$300

There is an even more powerful use of the FADE command, which takes the palette from another screen and fades it
into the colours of the current screen. Set the speed of the fade as usual, then give the number of the screen whose
palette is to be accessed. By using a negative number instead of a screen number, the palette from the sprite bank
will be loaded instead.

There is one more parameter that can be added, and this creates a mask that only permits certain colours to be faded
in. Each colour is associated with a single bit in the pattern, numbered from 0 to 15, and any bit that is set to 1 will
be affected by a colour change. For example:

E> Load "AMOSPro Tutorial:Objects/Bobs.Abk"
Screen Open 1,320,90,16,Lowres
Flash Off : Get Object Palette
Paste Bob 100,0,1
Wait 100
Fade 1 To 0,%01111000011001010
Wait 15

Flashing colours
You will already be aware that colour index number 3 is pre-set to flash on and off, and is the

06.03.02

Screen Effects

default setting for the text cursor. By using interrupts, any colour index can be cycled through a series of colour
changes, producing complex flashing effects.

FLASH

instruction: set flashing colour sequence

Flash index number,"(colour,delay)(colour,delay)(colour,delay)..."
Flash Off

When FLASH is followed by the index number of any colour, that colour will display animated flashing every time
it is used, until FLASH OFF is called. Up to 16 colours can be cycled to customise your flashing effects, and the
rate of delay from one colour change to the next can be individually set. Try this:

E> Flash 1 ," (0A0,10) (FOF,40)"

In that example, the colour to be affected is set to index number 1. After the comma, the set of quotation marks can
contain up to 16 pairs of brackets, and each pair of brackets contains the colour that is next on the list to be flashed,
and the time it will appear for. Colour is set in RGB component values, which are fully explained in the next
Chapter. Delay time is set in units of a 50th of a second. So the last example has the effect of flashing colour
number 1 between a green value and a violet value once every second. The next example is more subtle:

E> Cls : Centre "SILENT MOVIES"
Flash 1,"(111,4) (333,4) (555,4) (777,4) (555,7) (333,7)
Curs Off : Wait 250 : Flash Off

SHIFT UP
instruction: rotate colour values upwards
Shift Up delay,first,last,flag

This command takes the values held in the colour registers and shunts them forwards. The delay between colour
shifts is set in 50ths of a second, similarly to the FADE command.

Next the values of the colours to be affected are set, from the first colour to the last colour in the sequence. The first
colour in the list will be copied to the second, the second to the third, and so on until the last colour in the series is
reached.

Finally, a flag is set to either 0 or 1. When this flag is set to zero, the last colour is discarded, and the rotation will
cycle for the number of times it takes to replace all colours with the first colour in the list. Alternatively, if the flag is
set to one, the last colour index in the list is copied into the first, causing the colours to rotate continuously on
screen.

Each of your screens can have its own set of animated colour rotations, and because they are executed using
interrupts they will not affect the running of your programs.

SHIFT DOWN
instruction: rotate colour values downwards
Shift Down delay,first,last,flag

06.03.03

Screen Effects

This command is identical to SHIFT UP, except for the fact that colours are rotated in the opposite direction, so that
the second colour is copied into the first, the third to the second, and so on. With the final flag set to zero, all colours
are eventually replaced with the last colour in the list.

SHIFT OFF
instruction: turn off all colour shifts for current screen
Shift Off

Use this command to terminate all colour rotations previously set by the SHIFT UP and SHIFT DOWN instructions.

Rainbow effects

So far, most of the screen effects in this Chapter take a colour index and change its value over a set period of time.
AMOS Professional offers an alternative system, where colour indexes are changed depending on specific screen
locations. This means that a single colour index can be used to generate hundreds of colours in some spectacular
rainbow effects. Before any rainbows can be conjured up, their parameters must first be set.

SET RAINBOW
instruction: define a rainbow
Set Rainbow number,index,height,red$,green$,blue$

Try the next example before analysing how it works:

E> Set Rainbow 0,1,16,"(1,1,15)","",""
Rainbow 0,56,1,255
Curs Off : Flash Off
Locate ,12 : Centre "RED STRIPE"

Up to four different rainbows may be set up for later use, and SET RAINBOW is followed by an identification
number for this rainbow, from 0 to 3.

The next parameter is the colour index that is to be changed, and only colours 0 to 15 can be affected. In practice,
this colour can be assigned a different value for each horizontal screen scan line, if necessary.

Following this, the height parameter sets the size of the table to be used for colour storage, in other words, it sets the
height of the rainbow in units, with each unit ready to hold one scan line of colour. The size of this table can range
from 16 to 65500, but only the first 280 or so lines can be displayed on screen at once. So if your table is less than
the physical height of your rainbow, the colour pattern will be repeated on the screen.

Finally, the Red, Blue and Green components of the rainbow colours are set up as strings, each within their own
brackets. The last example leaves out any reference to the Green and Blue components, which is why the resulting
effect is completely in the Red. These strings will be

06.03.04

Screen Effects

cycled to produce the final rainbow pattern, and their format comprises three values contained in each relevant pair
of brackets, as follows:

(number,step,count)

Number refers to the number of scan lines assigned to one colour value. Think of it as controlling the "speed" of the
sequence. Step is a value to be added to the colour, which controls the colour change. Count is simply the number of
times this whole process is performed.

RAINBOW
instruction: display a rainbow
Rainbow number,offset,vertical position,height

The last example also demonstrates the parameters of the RAINBOW command, which is used to display one of the
rainbows created with SET RAINBOW.

The rainbow number is obvious, and refers to one of the four possible rainbow patterns from 0 to 3. The offset sets
the value for the first colour in the table created with SET RAINBOW, and it governs the cycling or repetition of the
rainbow on screen.

The vertical position is a coordinate which must have a minimum value of 40, and it affects the starting point of the
rainbow's vertical display on screen. If a lower coordinate is used, the rainbow will be displayed from line number
40 onwards.

Finally, the height number sets the rainbow's vertical height in screen scan lines.

Please note that normally only one rainbow at a time can be displayed at a particular scan line, and the one with the
lowest identification number will be drawn in front of any others However, experienced Amiga users will be able to
start more than one rainbow at the same line, using the Copper. See Appendix F for an explanation of this technique.

RAINBOW DEL
instruction: delete a rainbow
Rainbow Del

Rainbow Del number

Use this command on its own to get rid of all rainbows that have been set up. If a rainbow identity number is added,
then only that particular rainbow will be deleted.

RAIN
function: change the colour of a rainbow line
Rain(number,line)=colour

This powerful rainbow instruction allows you to change the colour of any rainbow line to value you choose. RAIN is

followed by a pair of brackets containing the number of the rainbow to be changed and the scan line number that is
to be affected.

06.03.05

Screen Effects

The next example demonstrates the following technique. Rainbow number 1, with colour index 1, is given a colour
table length of 4097, which is one entry for every colour value that will be displayed on screen. The RGB values are
left blank, to be set up by the first FOR ... NEXT routine, that contains the RAIN command. The second FOR ...
NEXT routine uses RAINBOW to display a pattern 255 lines long, starting at scan line 40. The DO ... LOOP
structure is used to repeat the process.

E> Curs Off : Centre "OVER THE RAINBOW"
Set Rainbow 1,1,4097,"", """, ""
For L=0 To 4095

Rain(1,L)=L
Next L
Do
For 0=0 To 4095-255 Step 4
Rainbow 1,C, 40,255
Wait Vbl
Next C
Loop

The copper list

The appearance of every line displayed on your screen is controlled by the Amiga's co- processor, known as the
"copper". The copper is a self-contained processor with its own special set of instructions, and its own internal
memory. A massive number of special effects can be created by programming the copper, but the copper list is
notoriously difficult to manipulate, and many competent programmers have failed to master its mysteries.

A full discussion of the copper lists may be found in Appendix F of this User Guide.

06.03.06

Graphics

In this Chapter, you will learn how to master the arts of form and colour.

AMOS Professional allows the programmer to harness the Amiga's full graphic potential, and all aspects of design
can be controlled simply, accurately and almost instantaneously. The computer-graphics artist is provided with a
standard electronic canvas 320 pixels wide and 200 pixels high, and there are potentially 4096 different colours to
exploit. In order to apply the chosen colour to the correct point, you will need to know the coordinates of each
available pixel, and as long as these graphic coordinates are not confused with the broader scale of text coordinates,
all will be well.

Graphic coordinates

PLOT

instruction: plot a single point
Plot x,y

Plot x,y,colour

This is the simplest drawing command of all, and plots a single pixel of ink colour between graphic coordinates 0,0
and 319,199. When followed by specific x,y-coordinates, the current ink colour will be plotted at this new position.
You are allowed to omit either the x or the y- coordinate, provided the comma is left in the correct position. If an
optional colour index number is added the new colour will be used for this and all subsequent drawing operations.
For example:

E> Cls: Curs Off
Do
Plot Rnd(319),Rnd(199),Rnd(15)
Loop

POINT
Sfunction: return the colour of a point
c=Point(x,y)

Use this function to find the index number of the colour occupying your chosen coordinates, like this:

Cls : Plot 160,100
Print "The colour is ";Point (160,100)

Setting the graphics cursor

GR LOCATE
instruction: position the graphics cursor
Gr Locate x,y

The graphics cursor sets the starting point for most drawing operations. To establish this point, use GR LOCATE to
position the graphics cursor at your chosen coordinates.

06.04.01

Graphics

For example:

E> X=150 : Y=10
For R=3 To 87 Step 3
Gr Locate X,Y+R
Circle ,,R
Next R

XGR

YGR

functions: return the relevant coordinate of the graphics cursor
x=Xgr

y=Ygr

Use these functions to find the current coordinates of the graphics cursor, which is the default location for future
drawing operations. For example:

E> Cls : Circle 100,100,50
Print Xgr,Ygr

Drawing lines

DRAW

instruction: draw a line
Draw x1 ,yl To x2,y2
Draw To x,y

Line drawing is extremely simple. Pick two sets of graphic coordinates, and draw your line from one to the other. To
draw a line from the current position of the graphics cursor, use DRAW TO followed by a single set of coordinates.
For example:

E> Cls: Ink 2
Draw 50,50 To 250,150
Draw To 275,175

Line styles

Changing the appearance of straight lines is very simple with AMOS Professional. Each line pattern is held in the
form of a binary number made up of 16 bits, with zeros setting blank spaces in the current background colour, and
ones setting the solid parts of the pattern in the current ink colour. So a normal solid line can be imagined as having
all its bits set to one, like this:

%01111111111111111

06.04.02

Graphics

SET LINE
instruction: set a line style
Set Line binary mask

This command sets the style of all straight lines that are subsequently drawn. Theoretically, the 16-bit mask can
generate values for different patterns between 0 and 65535, but here is a more practical example:

E> Cls : Ink 2
Set Line SFOFO
Box 50,100 To 150,140
Set Line %1100110011001100
Box 60,110 To 160,160

Drawing outline shapes
Here is a range of AMOS Professional short-cuts for drawing outline shapes on the screen.

POLYLINE

instruction: draw multiple line
Polyline x1 ,yl To x2,y2 To x3,y3
Polyline To x1 ,yl To x2,y2

The POLYLINE is identical to DRAW except that it accepts multiple coordinate settings at the same time. In this
way, complex many-sided outlines can be drawn with a single statement. In its POLYLINE TO form, drawing
begins at the current graphic cursor position. For example:

E> Circle 160,100,95
Polyline 160,6 To 100,173 To 250,69 To 71,69 To 222,173 To 160,6

BOX
instruction: draw a rectangular outline
Box x1,yl To x2,y2

Boxed outlines are drawn at settings determined by the top left-hand and bottom right-hand coordinates, as in the
last example.

CIRCLE
instruction: draw a circular outline
Circle x,y,radius

To draw circles, a pair of coordinates sets the position of the centre point around which the shape is to be drawn,
followed by the radius of the circle (the distance between the centre point and the circumference or rim of the
circle.) If the x,y-coordinates are omitted, the circle will be drawn from the current graphic cursor position.

06.04.03

Graphics

For example:

E> Cls : Curs Off : Ink 3
Gr Locate 160,100
Circle ,,45 : Wait 100: Flash Off

Do
Ink Rnd(15) : X=Rnd(250) : Y=Rnd(150) : R=Rnd(90)+1
Circle X,Y,R
Loop
ELLIPSE

instruction: draw an elliptical outline
Ellipse x,y,radius1,radius2

An ellipse is drawn in a similar way. After the x,y-coordinates have set the centre location, two radii must be given,
one to set the horizontal width and the second to set the height of the ellipse. Coordinates may be omitted as usual,
providing the commas remain in place. For example:

E> Ellipse 100,100,50,20
Ellipse ,,20,50

CLIP
instruction: restrict drawing to a limited screen area
Clip Clip x1 ,y1 To x2,y2

This command is used to set an invisible rectangular boundary on the screen, using the normal top left-hand corner
to bottom right-hand corner coordinates. All subsequent drawing operations will be clipped off when they reach
these boundaries. To toggle the command and restore the normal screen display area, use CLIP and omit the
coordinates. Areas that are preserved outside of the clipped zone can be used for items such as borders and control
panels. For example:

E> Clip 150,5 To 280,199
For R=4 To 96 Step 4
Gr Locate 150,R+5
Ellipse ,,R+9,R
Next R

Selecting colours

The next part of this Chapter explains how the AMOS Professional programmer is free to exploit the Amiga's superb
colour-handling features. Although the Amiga only provides 32 colour registers, AMOS Professional allows the use
of colour numbers ranging from 0 to 63. This is in order to make full use of the extra colours available from the
Half-Bright and HAM modes, as explained in Chapter 6.1.

06.04.04

Graphics

INK

instruction: set drawing colour
Ink number

Ink number,pattern,border

You are not restricted to the pre-set colours that have been allocated for drawing operations. The INK command is
used to specify which colour is to be used for subsequent drawing, and the number of the colour register is set like
this:

E> Cls: Ink 5
Draw To 319,199

The INK instruction can also be used to set patterns for filling shapes, as well as colours for borders around shapes,
and this will be explained later. The next concept to understand is how different colours are mixed.

Every shade of colour displayed on your television set or monitor is composed of various mixtures of the same three
primary colours: Red, Green and Blue (RGB for short). There is a range of 16 intensities available for each of the
RGB levels in every colour. A zero level is equivalent to "none" of that colour (black), and the maximum intensity
of 16 is the equivalent of "all" of that colour. Because there are three separate components each with 16 possible
strengths, the maximum range of available shades is 16 times 16 times 16, in other words 4096 possible colours.

The Amiga prefers to recognise colours by their RGB components, given in hexadecimal values, known as "hex".
The following table shows the equivalent decimal and hex values for the 16 numbers involved:

Hex digit 0 1 2 3
Decimal o 1 2 3

8 9 A B C D E F

4 5 6 7
4 6 7 8 9 10 11 12 13 14 15

5
COLOUR

function: read the colour assignment
c=Colour(index)

It is not difficult to find which colours are occupying the colour index, and analyse how much Red, Green and Blue
is used to make up each shade. The COLOUR function can take an index number from 0 to 31, and returns the
colour value assigned to that number. Hex$ is used for this purpose, as follows:

E> Curs Off : Flash Off
For C=0 To 15: Ink C
Print Hex$ (Colour (C),
Circle 160,75, (C+1)*4
Next C

3)

06.04.05

Graphics

That example creates a lit of 16 colour values in hex code, alongside a ripple of circles in those colours. Note that
the $ symbol is always used to introduce a hex number for the Amiga to recognise. The first hex value in the
example table should be $000, meaning no Red, no Green and no Blue component is present in colour index 0. Sure
enough, the innermost circle is drawn in black ink.

Here are some other examples in this form of notation:

Colour Hex value RGB components
White SFFF R=F G=F B=F
Grey $666 R=6 G=6 B=6
Green SOFO0 R=0 G=F B=0
Violet SFOF R=F G=0 B=F

Ox blood $801 R=8 G=0 B=1
Pig foot SA74 R=A G=7 B=4
COLOUR

instruction: assign a colour to an index
Colour number,SRGB

Used as an instruction, COLOUR allows you to assign the RGB components of a colour to each of the Amiga's 32
colour registers. For example, if you wanted to load colour number 1 with a subtle shade of pig's feet, you would use
this:

E> Cls : Colour 1,S$A74

COLOUR BACK

instruction: assign a colour to the screen background
Colour Back $RGB

Colour Back (number)

This command is used to assign your choice of RGB components for the screen's background colour, which fills
unused areas at the top and bottom of the visible screen. Alternatively, existing colours may also be specified when
enclosed in brackets.

Setting several colours
Impressive effects can be programmed using multi-colour changes, but assigning individual colours to every colour
index would be a tedious business. AMOS Professional handles all the donkey work as usual.

PALETTE
instruction: set the current screen colours
Palette colour list

This is a much more powerful command than COLOUR, and it can be used to set as few or as

06.04.06

Graphics

many colours in your artist's palette as are needed. Your programs always begin using a list of default colour values,
and these values may be changed as in the next example.

Remember that only the colours specifically set with this command will be affected, and any others will retain their
original values.

E> Palette SFFF : Rem set colour 0 to white
Palette ,,,,S$F00,$D00,SA00,5700,%400 : Rem colours 4 to 8 graded reds
Palette $000,,$000: Rem colours 0 and 2 both black

PALETTE can also be used to set the colours used by the Half-Bright and HAM modes, and some superb ready-
made examples are available, care of Chapter 6.1. For a little light relief, try his routine, which changes the first five
colours in the palette with a hexadecimal poem, and displays the result on screen. Feel free to change the values or
the poetry.

E> Palette $BAD, $0DD, $BOD, $FAB, SF1B
Curs Off : Flash Off
For C=0 To 4: Ink C
Print Hex$ (Colour (C, 3)
Bar 50,8*C To 150,8*C+8
Next C

Filled shapes

You should now be familiar with drawing basic shapes and setting choices of colour. The next stage explains how to
combine these skills. Re-set your colours now, by getting rid of any customised PALETTE commands, before
continuing.

PAINT

instruction: fill a screen area with colour
Paint x,y

Paint x,y,mode

The PAINT command allows you to fill any section of your screen with a solid block of colour. You may also fill
areas with various patterns previously selected with the SET PATTERN command, which is explained later. Decide
which area is to be filled, and follow the PAINT command by a set of coordinates located anywhere inside the
section of screen you want to paint with the current ink colour. Try this, which if all goes well should result in the
Japanese national flag:

E> Palette 0,SF00
Circle 160,100,50
Paint 50,50

The optional mode setting can be set to either zero or one. A value of 0 ends your PAINT operation at the first pixel
encountered of the current border colour. A mode of 1 stops the painting operation at any colour which is different
from the existing ink colour. If there are any gaps in the boundaries of the sections you wish to fill, colour will leak
out and stain the adjoining area.

06.04.07

Graphics

BAR
instruction: draw a filled rectangle
Bar x1,y1 To x2,y2

This is used to draw solid bars of colour by the familiar method of setting the top left-hand and bottom right-hand
graphic coordinates.

POLYGON

instruction: draw a filled polygon
Polygon x1,y1 To x2,y2 To x3,y3
Polygon To x1,y1, To x2,y2

This can be regarded as creating a solid version of the POLYLINE command, and your shape will begin at the
current graphic coordinates if you commence the command in its POLYGON TO form. Provided that your single
statement does not exceed the maximum allowed line length of 255 characters, there is no limit to the number of
pairs of coordinates you can use. Try this example:

E> Do
Ink Rnd(15)
X1=Rnd (250) : Y1=Rnd(150) : H=Rnd(200) : W=Rnd(150)
Polygon X1,Y1l To X1+4+W,Y1l To X1+W/2,Y1+H To X1,Y1
Loop

Alternative fill style
Filling shapes with plain colours is a useful technique, but the AMOS Professional programmer has a much wider
choice of fill effects.

SET PATTERN
instruction: select a fill pattern
Set Pattern number

Use this command to select from a range of pattern styles. The default status fills shapes with the current ink colour,
and is set with a zero, like this:

X> Set Pattern O

If SET PATTERN is followed by a positive number from 1 to 34, shapes are filled from a ready- made selection of
patterns.

06.04.08

Graphics

View them now, by running this routine:

D> Do

For N=0 To 34
Set Pattern N
Ink 0,1,2: Set Paint 1
Bar 50,50 To 150,150
Locate 0,0: Print N ;" "
Wait 50

Next N

Loop

If SET PATTERN is followed by a negative number, shapes will be filled with a pattern grabbed from a Sprite or
Bob image, taken from the Object Bank (memory bank 1). Because these patterns can be very complex, AMOS
Professional will simplify them automatically, as follows.

The width of the image is clipped to 16 pixels, and the height is rounded to the nearest power of two (2, 4, 8, 16, 32
and so on.)

The original colours of the image are discarded, and the pattern is drawn using the current ink and paper colours.
Two-colour patterns are drawn as monochrome images.

If multi-coloured images are required using the original Object colours, the INK must first be set up, as follows:

X> Ink 15,0
Set Pattern -1
Paint 100,100

That example fills the screen area around the given coordinates with any of the Object colours, except the
transparent colour zero. The colour index number 15 acts as a mask, defining which colours are to be used, and sets
the range from 1 to 15. If the INK command is changed to the following line, the Object will be drawn with the
normally transparent colour filled by colour 1:

X> Ink 15,1

Before making use of sprite images as fill patterns, remember to use GET SPRITE PALETTE to avoid messy
displays. Here is an example:

E> Flash Off : Cls O
Load "AMOSPro Tutorial:Objects/Pattern.Abk"
Get Sprite Palette
Box 1,1 To 319,199
Ink 15,0
Set Pattern -1
Paint 102,102

06.04.09

Graphics

SET PAINT
instruction: toggle outline mode
Set Paint mode

This is a simple command that toggles outlines off and on for any shapes drawn using the POLYGON and BAR
instructions. Follow SET PAINT with a mode value of 1, and borders will appear in the previous ink colour. If the
mode is set by a zero, the default setting applies, with no borders shown. For example:

E> Ink 0,1,2 : Set Paint 1
Bar 5,5 To 200,100
Set paint 0: Bar 210,75 To 310,190

In the last example, the INK command carried additional parameters. These optional settings follow the usual colour
number, and are used to determine paper and border colours. In other words, they can set the colours to be used for
fill patterns and outlines of bars and polygons. Remember to include any commas for unused options, as follows:

X> Ink 3: Rem Set ink colour
ink ,,5: Rem Set border outline only
Ink 0,8,2: Rem Set ink, fill colour and border
Ink 6,13: Rem Set ink and background fill colour

Overwriting styles

When graphics are drawn, they normally get "written" over what is already displayed on the screen. There are four
alternative drawing modes that change the way your graphics appear, and they may be used individually or
combined to generate a whole range of effects.

GR WRITING
instruction: change graphic writing mode
Gr Writing bitpattern

This command is used to set the various modes used for drawing lines, shapes, filled shapes and graphical text.
Settings are made using a bit pattern, whose values give the following results:

Bit 0 = 0 only draw graphics using the current ink colour.

Bit 0 = 1 replace any existing graphics with new graphics (default condition).
Bit 1 = 1 change old graphics that overlap with new graphics, using XOR.

Bit 2 = 1 reverse ink and paper colours, creating inverse video effect.

The normal drawing state is where new graphics overwrite old graphics, like this:

E> Ink 2,5 : Text 100,80, "NORMAL TEXT"
Wait 100 : Gr Writing 1
Text 10 ,80, "REPLACE"

06.04.10

Graphics

Try the next example for some simple demonstrations of alternative settings:

E> Ink 2,5 : Text 100,80, "NORMAL TEXT"
Wait 100 : Gr Writing O
Text 100,80, "MERGED"
Wait 100 : Gr Writing 4
Text 100,90, "STENCIL"
Wait 100 : Gr Writing 5
Text 100,100, "REVERSE"

Advanced techniques

Whenever AMOS Professional performs a fill command, a special area of memory is reserved to hold the fill
pattern. This memory is automatically returned to the system after the fill instruction has been performed. The size
of the memory buffer is equivalent to a single bit plane in the current screen mode, so the default screen takes up a
total of 8k.

SET TEMPRAS

instruction: set Temporary Raster

Set Tempras

Set Tempras buffer address,buffer size

This command allows the AMOS Professional programmer to adjust the amount of memory used by the various
graphics operations. You are warned that improper usage can cause your computer to crash! The address and size of
the graphics buffer can be changed as explained below.

The buffer address can be either an address or a memory bank, and the memory reserved for this buffer should
always be Chip RAM. After allocating the buffer area at the start of your program, there is no need to keep on
reserving and restoring it, which means that the execution of your programs can be speeded up by up to 5%!

The buffer size is the number of bytes you want to reserve for the buffer area, ranging from 256 to 65536. To
calculate the amount of memory you need for a particular object, enclose the object in a rectangular box and apply
the following formula:

Memory area = Width/8*Height

If you are intending to use the PAINT command, make sure that your shape is closed, otherwise additional memory
may be called for, causing the system to crash.

The buffer area can be restored to its original value by calling SET TEMPRAS with no parameters.

06.04.11

Menus

In this Chapter, the AMOS Professional programmer will learn how to create, control and use powerful on-screen
menus. These techniques allow you to customise your own menu designs and operations, and offer true interactivity.

AMOS Professional menus can have as many as eight overlaid levels and any menu item can be repositioned
anywhere on screen. There is no restriction to the inclusion of title styles and graphic images, and your own Bobs
and icons can be used directly.

When reading your menus, branching to user-selected points in your programs can be automatic, whether triggered
by the mouse or directly from the keyboard. And if you cannot wait to see all this in action, the Chapter is
accompanied by a full range of ready-made demonstration programs available on the AMOSPro Tutorial disc.

Using AMOS Professional menus

SELECTING. All of these menus are activated by holding down the right mouse button. Once the relevant menu has
appeared on screen, drag the mouse cursor over the option you wish to select and release the button. The selected
option number is automatically returned to your program.

REPOSITIONING. A menu can be repositioned on screen by placing the mouse cursor over its lop left-hand corner
and holding down the left mouse button. When a small box appears on the menu bar, drag it across the screen using
the mouse. To freeze the current position of a menu, hold down the [Shift] key as well. This allows you to explore
the menu without activating any of its options.

AMOS Professional menus can be created directly from within your programs, or you may prefer to use the menu
defining program supplied on disc.

Simple menus

MENU$

reserved variable: define a menu title or option
Menu$(number)=title$
Menu$(number,option)=option$

To create a simple menu, its title line must first be defined. Each heading in a title line created with MENUS$ must
be assigned its own number. The title at the left-hand edge of the title line is represented by 1, the next title by 2,
and so on, from left to right. The characters in your title string hold the name of the numbered title. This example
sets up a menu title line offering two titles, and you should note the use of the spaces to separate titles when they
appear in the title line:

E> Menu$(l)," Action"
Menu$ (2) ," Mouse"

06.05.01

Menus

The second type of usage of MENUS defines a set of options that will be displayed in the vertical menu bar. The
brackets after MENUS contain two parameters, the first is the number of the menu heading that your option is to be
displayed beneath, followed by the option number you want to install in the vertical menu bar. All options are
numbered downwards from the top of the menu, starting from 1. The option string holds the name of your new
option, and can consist of any text you choose. The following lines could be added to the last example above:

E> Rem Action menu has one option

Menu$ (1,1)=" Quit " : Rem Ensure three spaces after Quit
Rem Mouse menu has three options

Menu$ (2,1)="Arrow " : Rem Ensure five spaces after Arrow
Menu$ (2, 2)="Cross-hair"

Menu$ (2,3)="Clock " : Rem Ensure five spaces after Clock

That specifies your list of alternatives for the "Action" and "Mouse" menus. Before this program can be run, it must
first be activated.

MENU ON
instruction. activate a menu
Menu On

Use this command to initialise the menu previously defined by a MENUS, and the menu line will appear when the
right mouse button is pressed. To activate the previous example, add the following lines:

E> Menu On
Wait Key

Trigger the menu and its options now, and use the left mouse button to re-locate the title bar. Now that this simple
menu has been activated, the selected options must be read and reported back to the system.

Reading a simple menu

CHOICE

function: read a menu
selection=Choice

title number=Choice(1)
option number=Choice(2)

CHOICE will return a value of -1 (true) if the menu has been highlighted by the user, otherwise a value of 0 (false)
is returned. After the status of your menu is tested, the value held by CHOICE is automatically re-set to zero.

CHOICE(1) will return the value of the title number which has been chosen.

06.05.02

Menus

CHOICE(2) will return the value of the option number which has been selected.

Now remove the Wait Key from the last example, and replace it with the following lines. This should change the
shape of the mouse cursor, depending on the option selected from your menu. Note that Choice=-1 can be simplified
to Choice.

E> Do
If Choice and Choice(l)=1 Then Exit
If Choice(l)=2 and Choice(2)<>0 Then Change Mouse Choice (2)
Loop

Creating advanced menus
The use of MENUS$ and CHOICE is not limited to the creation of simple menus. In fact, their use can be extremely
sophisticated.

MENUS is used to define the appearance of each individual item in one of your menus, whether it is a title, an
option, a sub-option, all the way down to the eighth layer of options in the menu hierarchy. In this Chapter, when
"single item parameters" is used it simply means those numbers separated by commas and held inside a single pair
of brackets, that refer to the position of a single item somewhere in the menu. Up to eight parameters can be used,
separated by commas. To make sure that is clear, here are some examples of parameters defining the position of a
single item in the menu hierarchy:

X> Menu$ (1)="Titlel"
Menu$ (1 ,1)="Titlel Optionl"
Menu$ (2,3)="Title2, Option2"
Menu$(1,1,1,1)="Titlel, Optionl, Sub-optionl, Sub-sub-optionl"

Now look at these uses of MENUS, which are used to give a single item its own characteristics:

MENUS

instruction: define appearance of a single item in a menu

Menu$(single item parameters)=normal$

Menu$(single item parameters)=normal$,selected$,inactive$,background$

Normal$ is simply the string of characters that make up the normal appearance of an item when it is displayed on
screen. The following strings are all optional.

The selected$ changes the appearance of the item when it is selected by the mouse. As a default, selected items are
highlighted by printing the string in inverse text.

The inactive$ comes into effect when an item has been deactivated using the MENU INACTIVE command, which
is explained later. It can be used to display alternative text or appearance, but if it is omitted, inactive items are
automatically displayed in italics.

The background$ creates a background effect for menu items when they are initially drawn, such as a box or a
border created by the internal BAR or line drawing commands.

06.05.03

Menus

Similarly, the CHOICE function can return the option selected at a required level in the menu hierarchy. For
example:

E> Menu$ (1)="Title"
Menu$ (1,1)="Option 1"
(1

Menu$ (1,2)="Option 2"
Menu$ (1,2,1)="0Option 2.1"
Menu On
Do
If Choice Then Print Choice(l),Choice(2),Choice(3)
Loop

For very large menus, the IF structure as used in the last example would become unwieldy, and cause delays while
the menus were being read. AMOS Professional provides a method for handling the largest of menus.

ON MENU PROC

instruction: automatic menu selection
On Menu Proc procedurel

On Menu Proc procedurel,procedure2

Each title in your menu can be assigned its own procedure which will be executed automatically when that option is
selected by the user. Like the other ON MENU commands that are described next, ON MENU PROC uses
interrupts, which means that it is performed 50 times a second. So your program can be engaged in other tasks while
the menus are continually checked by the system.

When automatic selection takes place as the result of ON MENU PROC, the procedure is executed and the program
will be returned to the instruction immediately after the ON MENU call. Procedures can make use of the CHOICE
function to monitor which option has been triggered, and to perform the appropriate action.

ON MENU GOSUB

instruction: automatic menu selection
On Menu Gosub labell

On Menu Gosub labell,label2

Depending on which option has been selected by the user, ON MENU GOSUB goes to the appropriate subroutine.
Unlike Amiga Basic, each title on the menu title bar is handled by its own individual subroutine. After using this
instruction, ON MENU should be used to activate the menu system before jumping back to the main program with a
RETURN. Also note that the labels used with this command cannot be replaced by expressions, because the label
will be evaluated once only when the program is run.

06.05.04

Menus

ON MENU GOTO

instruction: automatic menu selection
On Menu Goto labell

On Menu Goto labell, label2...

Although this command is available for use, it has been superseded by the more powerful ON MENU PROC and
ON MENU GOSUB instructions. It is retained to provide compatibility with programs written in STOS Basic.

ON MENU ON/OFF

instruction: toggle automatic menu selection
On Menu On

On Menu Off

To activate the automatic menu system created by the ON MENU PROC, GOSUB or GOTO commands, simply
give the ON MENU ON command. After a subroutine has been accessed in this way, the system is automatically
disabled. Therefore you must reactivate the system with ON MENU ON before returning to the main program.

To suspend the automatic menu system, ON MENU OFF is used. This can be vital if your program is executing a
procedure which must be performed without interruptions, such as loading and saving information to disc. Menus
are reactivated using ON MENU ON.

ON MENU DEL
instruction: delete labels and procedures used by ON MENU
On Menu Del

Use ON MENU DEL to erase the internal list of labels or procedures created by the range of ON MENU
commands. You are warned that this command can only be used after menus have been deactivated by ON MENU
OFF.

The Menu control commands

MENU ON

instruction: activate a menu
Menu On

Menu On bank number

The simple form of this command has already been dealt with at the beginning of this Chapter. After MENU ON, a
menu is displayed when the user next presses the right mouse button. If an optional bank number is included after
the command, the appropriate menu will be taken from the numbered memory bank. Please see MAKE MENU
BANK, below.

MENU OFF

instruction: deactivate a menu
Menu Off

06.05.05

Menus

This command temporarily turns a menu off, making it inactive. The menu can be reactivated at any time with the
MENU ON command.

MENU DEL

instruction: delete one or more menu items
Menu Del

Menu Del(single item parameters)

On its own, MENU DEL erases the whole menu. But be warned, once the menu has been deleted it cannot be
retrieved!

MENU DEL can also be qualified by up to eight parameters, separated by commas, and held in a single pair of
brackets. These values represent the precise position of the item in the menu hierarchy to be deleted. For example:

X> Menu Del(l) : Rem Delete title number 1
Menu Del(1l,2) : Rem Delete option 2 of title 1
Menu Del(2,3,4) : Rem Delete sub-option 4 of option 3 of title 2

MENU TO BANK
instruction: save menu definitions into a memory bank
Menu To Bank number

Use this command to save your menu along with its entire structure of branch definitions to the numbered bank.
Once the menu has been stored in the selected memory bank, it will automatically be saved along with your Basic
program. By storing your menu definitions in a memory bank, the size of your program listings are reduced
significantly, freeing valuable space in the editor memory. If the bank number you select already exists, the
appropriate error message will be given.

BANK TO MENU
instruction: restore a menu definition saved in a menu bank
Bank To Menu number

Follow BANK TO MENU with the number of the memory bank where your menu data is stored. The menu will be
restored to its exact state when originally saved, so the restoration process may take a few seconds. To activate the
restored menu, call MENU ON.

MENU CALC
instruction: recalculate a menu
Menu Calc

Any item in an AMOS Professional menu can be changed during the course of a program. This is extremely useful
for designing adventure games or creating self help programs, where individual menu options can be updated
depending on the user's actions. After the menu has been defined, items may be added and options replaced as you
please, and everything will be repositioned automatically as soon as the menu is called up with the right mouse
button.

06.05.06

Menus

This is process may take a few seconds, particularly with very large menus, and the MENU CALC command is
designed to perform this recalculation at the most suitable point in the program, in order to minimise any delays.

You are advised to freeze your menus with MENU OFF at the start of the recalculation procedure, to prevent the
user calling the menu half way through an update. It may then be made active again using MENU ON after the
updating process is over.

Alternative menu styles

The AMOS Professional programmer is free to change the display format of any level of any menu, and design a
customised layout. As a default, all titles are displayed in a horizontal bar with their related options arranged below
in a vertical block. Here are the alternatives:

MENU LINE

instruction: display menu options as a horizontal line
Menu Line level number

Menu Line (single item parameters)

Use this command to change the display of options that relate to a particular title from a vertical block into a
horizontal line. The line of options will now start from the left-hand corner of the first menu title and stretch to the
bottom right-hand corner of the last title. Follow MENU LINE with the number of the level you want to affect, and
make sure that this command is only called during your menu definitions. The level number can range from 1 to 8§,
and it specifies the layer of the menu to be affected.

It is perfectly legal to set individual items by this method, and with the following MENU TLINE and MENU BAR
commands. This can result in some highly eccentric displays.

X> Menu Line(l,1,1) : Rem Display sub-option 1,1,1 as a line

MENU TLINE

instruction: display a menu as a total line
Menu Tline level number

Menu Tline(single item parameters)

MENU TUNE is used to display a section of your menu as a total line, stretching from the extreme left to the
extreme right of the screen. The complete line will be drawn even if the first item is centre screen. Use this
instruction in the same way as MENU LINE during your menu definitions.

MENU BAR

instruction: display menu items as a vertical bar
Menu Bar level number

Menu Bar(single item parameters)

06.05.07

Menus

This instruction displays.the selected menu items as a vertical bar whose width is automatically set to the length of
the largest item in the menu. As a default, this option is used for levels 2 to 8 of your menu, and it must be used
during the program's initialisation. There will be no effect if it is called after the menu has been activated.

When followed by a list of bracketed parameters, MENU BAR can also be used to change the style of your menus
once they have been installed. Here is an example of a customised menu layout:

E> FLAG=0
SET MEN
Do
If Choice and Choice(l)=2 and Choice(2)=1 Then CHANGE
Loop
Procedure SET MEN
Menu$ (1)="Try me first " : Menu$(2)="Select me " : Rem Four spaces
Menu$(1,1)="1 am useless " : Rem Five spaces
Menu$ (2,1)="Please select me!"
Menu On
End Proc

Procedure CHANGE

Shared FLAG

Menu Del

If FLAG=0 Then Menu Bar 1: FLAG=1 Else Menu Tline 1: Flag=0
SET MEN
End Proc

MENU INACTIVE

instruction: turn off a menu item

Menu Inactive level number

Menu Inactive(single item parameters)

Use this command to turn off options in your menu. By selecting the number of a level from 1 to 8, all items in that
level will be deactivated. If you define an individual item in brackets by giving its parameters, only that item will
become inactive.

If no inactive string has been defined when you originally set your menu up with MENUS, any menu options that
have been made inactive will be shown in italics. Otherwise the special inactive string will appear.

MENU ACTIVE

instruction: activate a menu item
Menu Active level number

Menu Active(single item parameters)

06.05.08

Menus

MENU ACTIVE reverses the effect of a previous MENU INACTIVE command. An entire level or single item
specified by its parameters can be re-activated and the original appearance of their title strings will be re-displayed.

Moving menu displays
As has been explained, AMOS Professional menus can be displayed anywhere on your screen. he display positions
can be moved either by the user or by your program.

MENU MOVABLE

instruction: activate automatic menu movement
Menu Movable level number

Menu Movable(single item parameters)

The default condition is that the menu items at a particular level may be moved directly by the user. Any level can
be repositioned by moving the mouse pointer over the first item in the menu and holding down the left mouse
button. A rectangular box will appear around the selected menu item, and it can be dragged to its new screen
position. When the left mouse button is released, the menu is re-drawn at this location, along with all of its
associated items.

Use MENU MOVABLE to set the status of entire menu levels, or selected items in a menu hierarchy, but please
note that this command does not allow you to change the status of any items below the selected level.

MENU STATIC

instruction: fix a menu in static position
Menu Static level number

Menu Static(single item parameters)

One characteristic of mobile menus is that the amount of memory they use changes during the course of the
program. With large menus or programs that are on the boundary of available memory this can cause real problems.
MENU STATIC can be used to avoid these difficulties by setting the level or item at which the entire menu
becomes immovable by the user.

MENU ITEM STATIC

instruction: fix items in static positions
Menu Item Static level number

Menu Item Static(single item parameters)

This command locks one or more menu items into place, and is the default setting.

MENU ITEM MOVABLE

instruction: move individual menu options
Menu Item Movable level number

Menu Item Movable(single item parameters)

06.05.09

Menus

This is similar to MENU MOVABLE, but it allows the re-arrangement of various options in a particular level.
Normally it is not possible to move items outside of the current menu bar, but this can be overcome by the MENU
SEPARATE command, which is explained below.

To use MENU ITEM MOVABLE for changing the position of a menu item, the entire menu bar must itself be
movable. So if MENU STATIC has been called, this command will have no effect. The first item in a menu bar can
not be moved, because this would move the entire line. Furthermore, if the last item in a menu bar is moved, the size
of that bar will be permanently reduced.

This problem can be overcome either by setting the last item into place with a MENU ITEM STATIC command, or
by enclosing the whole menu bar with a rectangular box, like this:

X> Menu$ (1 ,1)=,,,,"(Bar40,100) (Loc0O,0)"

MENU SEPARATE

instruction: separate a list of menu items
Menu Separate level number

Menu Separate(single item parameters)

This command is used to separate all the items in the numbered level of the menu. Each item will then be treated
independently. If no background string has been defined, every item is offset from the preceding item by two pixels,
creating a stepped effect, which can be removed by editing from the Menu utility.

By specifying the parameters of a single item after the MENU SEPARATE command, a menu bar can be split at
any chosen point. Once an item has been separated it can be affected by the MENU MOVABLE command instead
of the ITEM instructions.

MENU LINK

instruction: link a list of menu items
Menu Link level number

Menu Link(single item parameters)

This is the exact opposite of MENU SEPARATE, and is used to link one or more items together.

X MENU
function: return the graphical x-coordinate of a menu item
x=X Menu(single item parameters)

The X MENU function allows you to get the position of a menu item, relative to the previous option on screen. This
information can be used to set up very powerful menus.

Y MENU
function: return the graphical y-coordinate of a menu item
y=Y Menu(single item parameters)

06.05.10

Menus

Y MENU returns the y-coordinate of a menu option, measured relatively to the previous item on screen. Please refer
to the demonstration program above.

Moving a menu within a program

MENU BASE
instruction: move the starting position of a menu
Menu Base x,y

Use this command to move the starting point of the first level in your menu hierarchy to the absolute screen
coordinates at x,y. All subordinate menu items will now be displayed relative to this starting point.

SET MENU
instruction.: move a menu item
Set Menu(single item parameters) To X,y

SET MENU sets the screen position of the top left-hand corner of the menu item whose parameters are given in
brackets. These coordinates are measured relative to the previous level, so the starting point for the entire menu can
be set by the MENU BASE command. All levels of the menu below this single item will also be moved by your
SET MENU command. The coordinates can be negative as well as positive, so you are free to position items
anywhere on screen.

MENU MOUSE ON

MENU MOUSE OFF

instruction: display the menu at position of mouse cursor
Menu Mouse On

Menu Mouse Off

Use these commands to toggle the display of all menus starting from the current position of the mouse cursor. The
mouse coordinates are added to the MENU BASE to calculate the menu position, so it is possible to lace a menu at a
fixed distance from the mouse pointer.

Keyboard shortcuts

Menus are an extremely useful system of selecting from a clear choice of options. They present the user with a
simple method of performing some complex operations, and they are particularly suitable for the less experienced or
younger user. But the AMOS Professional programmer can be more concerned with speed rather than simplicity,
and menu operations can become a little tedious. This is why you may prefer to choose your options directly from
the keyboard.

AMOS Professional allows you to assign a keyboard shortcut to any of your menu items, and these key presses are
interpreted as their exact equivalents. They can be used with any menu command, including the ON MENU range.

06.05.11

Menus

MENU KEY

instruction: assign a key to a menu item

Menu Key(single item parameters) To c$

Menu Key(single item parameter) To scancode, bitmap

Any key can be assigned to an item in a previously defined menu, provided that the item specified is at the bottom
level of the menu. In other words, keyboard shortcuts cannot be used to select sub-menus because each command
must correspond to a single option in the menu.

In its simplest form, define the single item parameters as usual, by giving their hierarchy numbers in brackets after
MENU KEY. Then assign the item TO a string containing a single character. Any additional characters in this string
will be ignored.

Because each key on the Amiga keyboard is assigned its own scancode, this code can be made use of for those keys
that have no Ascii equivalents, the so-called control keys. Here is a simple routine to print out scancodes:

E> Do
Repeat
As$=inkey$
Until AS<>""
Z=Scancode
Print Z
Loop

The following scancodes can also be used with the MENU KEY command, instead of a character string:

Scancode Keys

80 to 89 Function keys [F1] to [F10]
95 [Help]

69 [Esc]

An optional bitmap can also be added, to check for control key combinations such as [Ctrl] + [A]. Here are the
alternatives:

Bit Key Tested Notes

0 left [Shift]) only one [Shift] key can be tested at a time
1 right [Shift] only one [Shift] key can be tested at a time
2 [Caps Lock] either ON or OFF

3 [Ctrl]

4 left [Alt]

5 right [Alt] this is the [Commodore] key on some keyboards
6 left [Amigal

7 right [Amiga]

06.05.12

Menus

If more than a single bit is set in this pattern, several keys must be pressed at the same time in order to call up the
associated menu item. Any of these keyboard shortcuts can be erased by using MENU KEY with no parameters. For
example:

X> Menu Key(1,10) : Rem Erase shortcut assigned to item (1,10)

Here is an example that checks for key presses of the Amiga's ten function keys:

E> Menu$ (1)="Function Keys"

For A=1 To 10

OPTS="F"+StrS$ (A)+" "

Menu$ (1,A)=0PTS$

Menu Key(1l,A) To 79+A
Next A
Menu On

Do

If Choice Then Print "You have pressed Function Key ";Choice(2)
Loop

Embedded menu commands
AMOS Professional menus offer complete freedom to make use of any text styles of graphics you want. The final
part of this Chapter deals with the commands that make this possible.

Any menu string can include a powerful set of optional embedded commands that allow you to customise the
appearance of your menus. These embedded commands must be enclosed between sets of brackets, and individual
commands must be separated by colons, like this:

X> Menu$ (1) " (LOcate 10,10: Ink 1,1)I am embedded"

Each embedded command consists of only two characters, which can be in either upper or lower case. Any other
characters will be ignored. So the following characters will be treated as "LO" when entered as an embedded
command:

X> LO
lo
locate
Lonniedonegan

Most embedded commands also require you to input one or more numbers. These numbers must never make use of
expressions, because they will not be evaluated.

In the listings for all of the following embedded commands, the two important characters that make up the command
are in upper case bold type.

LOCATE
embedded command: move the graphics cursor
LOcate x,y

06.05.13

Menus

The LOcate embedded command moves the graphics cursor to coordinates x,y measured relative to the top left-hand
corner of the 'menu line. Please note that after this command, the graphics cursor will always be positioned at the
bottom right of the object which has just be drawn. These coordinates will also be used to determine the location of
any further items in your menu. For example:

E> Menu$ (1)="Example " : Menu$(l,1)="Locate (LO 50,50) in action"
Menu$ (1,2)="Please guess my coords"
Menu On : Wait Key

BOB
embedded command: draw a bob
BODb number

The BOb command draws the specified Bob image from the Object Bank at the current cursor position. The
existence of any hot spot will be ignored. Colour zero will normally be treated as transparent, but this can be
changed with NO MASK. All coordinates will be measured relative to the top left-hand corner.

ICON
embedded command: draw an icon
ICon number

ICon draws the given icon number at the current cursor position. Colour zero is not normally transparent in this case,
but transparency can be achieved with MAKE ICON MASK, as detailed in Chapter 7.7.

INK
embedded command: set pen, paper or outline colour
INk mode,value

The INk command assigns the colour index values to be used for the pen, paper and outline colours in your menu
drawing. The numbers to be used for the various modes are as follows:

Number Mode

1 Set text PEN colour
2 Set PAPER colour

3 Set OUTLINE colour
SFONT

embedded command.: set font
SFont number

SFont sets the current menu font to the selected graphics font number. This font will now be used for all subsequent
menu items. GET FONTS must be called before this instruction is executed.

06.05.14

Menus

SSTYLE
embedded command.: set font style
SStyle bit-pattern

SStyle sets the style of the "Current font to the selected bit-pattern. In the following table, a setting of 1 will have
the listed effect, whereas a setting of zero will have no effect:

Bit Effect

0 underline

1 bold

2 italic

LINE

embedded command: draw a line
LIne x,y

LIne draws a line from the current cursor position to the graphics coordinates x,y.

SLINE
embedded command: set line pattern
SLine pattern

SLine sets the line style to be used in all subsequent LIne commands to the selected bit-pattern. Because there is no
evaluation of expressions, the bit-pattern must be converted into decimal notation before use.

BAR
embedded command: draw a bar
BAr x,y

BAr draws a rectangular bar from the current cursor coordinates to X,y.

PATTERN
embedded command.: draw a pattern
PAttern number

PAttern changes the fill pattern used by the BAr command to the numbered style.
OUTLINE
embedded command: enclose a bar with an outline

OUtline value

OUtline draws a border in the current outline colour (set to ink colour 3) around all subsequent bars. A value of 1
activates the border and a value of 0 removes it.

06.05.15

Menus

ELLIPSE
embedded command.: draw an ellipse
ELlipse radius] ,radius2

ELlipse draws an ellipse centred on the current coordinates, with the chosen radii. To draw a circle centred at the
current coordinates, simply make radius1 equal to radius2.

PROC
embedded command: call a procedure
PRoc NAME

PRoc allows you to call any AMOS Professional procedure directly within a menu line. The called procedure cannot
include any parameters, otherwise a syntax error will be generated.

This is the command that allows you to customise your menu to your own needs and ignore the limitations of the
available menu commands.

At the start of your procedure, the following values are held in the Amiga's 68000 processor registers:

DREG(0) holds the graphical x-coordinate of the top left-hand corner of the current menu item. Do not draw
graphics to the left of this point on the screen unless you want to confuse the menu re-drawing process and generate
bizarre effects.

DREG(1) holds the y-coordinate of your menu item. Avoid drawing below this point on the screen to minimalise
possible errors.

DREG(2) holds the current status of your menu drawing operations. It contains a value of 0 (false) while the menu
item is being drawn, in which case you must load DREG(0) and DREG(1) with the x,y-coordinates of the bottom
right-hand corner of your menu zone, and return from the procedure immediately. If DREG(2) is -1 (true), you are
free to perform the graphics operations used by the procedure. After completion, you should return the coordinates of
the bottom right-hand corner of your item in DREG(0) and DREG(1) as above.

DREG(3) holds a value of -1 if the menu is selected and the first menu string is on display, otherwise it will contain
a value of 0.

DREG(4) is set to TRUE when the menu branch is initially opened.

AREG(1) holds the address of the zone created with RESERVE. It is used to allow different procedures to
communicate with one another.

06.05.16

Menus

Here is the general structure of a menu procedure:

X> Procedure ITEM

If DREG(2)
X=DREG (0) : Y=DREG(1)
drawing instructions go here
Endif
DREG (0)=BX : Rem x coord of bottom right corner of menu item
DREG(1)=BY : Rem y coord of bottom right corner of menu item
Endproc

The dimensions of the menu item as it is displayed on screen are set using the coordinates BX and BY. These must
be loaded into registers DREG(0) and DREG(1) before leaving your procedure because they are needed to create the
final menu bar.

While inside your procedure, most AMOS Professional instructions can be performed, including other procedures.
However, the following rules must be observed to avoid your Amiga crashing!

« Never change the current screen inside a menu.

« Do not set or re-set a screen zone.

 Avoid instructions that halt the action of your program (WAIT, INPUT, INKEYS, etc)

« All disc operations are absolutely forbidden.

« Errors will bypass any error trapping in the procedure, and the program will return to the editor after closing
the procedure.

RESERVE
embedded command.: reserve a local data area for a procedure
REserve number of bytes

REserve allocates the chosen number of bytes of memory for a menu item. This area can then be accessed from
within your menu procedure using the address held in AREG(1). The data area that is reserved in this way is for the
storage of variables. This area is local to the menu item that calls the procedure.

Automatic re-drawing of menus
The last two commands in this Chapter affect the automatic process which re-draws the selected menu 50 times
every second.

MENU CALLED
instruction: re-draw a menu item continually
Menu Called(single item parameters)

MENU CALLED engages the automatic re-drawing process. This command is normally used with a menu
procedure to generate animated menu items, often with spectacular moving graphic effects.

06.05.17

Menus

To use this facility, a menu procedure should first be defined, as explained above. Next, add a call to this procedure
in the required title strings, using an embedded PRoc command. Finally, activate the updating process with MENU
CALLED. When the user selects the chosen item, your procedure is repeatedly accessed by the menu system.

Because menu items are not double buffered, bobs may flicker a little, but the use of computed sprites will present
no such problems.

MENU ONCE
instruction: turn off automatic re-drawing
Menu Once(single item parameters)

MENU ONCE turns off the automatic updating system instigated by MENU CALLED. After the command is given,
each menu item will only be re-drawn once when the menu is called on the screen. It is used like this:

X> Menu Once(1,1)

06.05.18

Hardware Sprites

Section 7 of this User Guide concentrates on the moving image. You will learn how to create, edit and control
moving objects and backgrounds, how to make them react to one another and how to create professional animations.

AMOS Professional offers ,a choice of two moving-object systems, each with its own characteristics and benefits.
Objects stored as part of the current screen are featured in the next Chapter. These blitter objects (Bobs) are easy to
use, very fast and incredibly flexible. Unfortunately, they consume a lot of memory and tend to slow down on 32 or
64-colour displays.

By contrast, this Chapter deals with those graphical objects that exist independently from the screen, known as
Sprites. You will discover how AMOS Professional shatters the limitations imposed by the Amiga on the number,
size and colours of Sprites, and how to fully exploit their potential.

Normal hardware Sprites

Sprites are directly generated by the Amiga's hardware. Because they are completely independent from the screen,
they can be moved at very high speeds over any type of screen, including the 4096-colour screens achieved in HAM
mode. This makes hardware Sprites ideal for use in arcade games.

The Amiga offers up to eight hardware Sprites for instant display over any position on screen. They are supposed to
be exactly 16 units wide, up to 270 scan lines high and feature three colours, with colour zero "transparent”,
allowing the background screen to show through. The computer's hardware can also combine pairs of Sprites,
increasing the range of colours to 15, but halving the number of available Sprites to just four.

A choice between eight 3-colour and four 15-colour Sprites on screen is very limited, and quite unacceptable to the
AMOS Professional programmer, so the old Rule Book has been torn up and rewritten for your benefit.

AMOS Professional computed Sprites

The AMOS Professional system takes the original hardware Sprites and combines them in a revolutionary way. The
new "computed Sprites" are extremely powerful, they are perfect for the games programmer and they offer the
following advantages:

« 56 computed Sprites are allowed on screen at once.
« Each Sprite can feature up to 15 colours.
« Each Sprite may be up to 64 units wide.
« Each Sprite may be up to 270 lines high.

In order to take full advantage of computed Sprites in practice, you will need some working knowledge of the theory
behind them.

AMOS Professional computed Sprites rely on the fact that each original Amiga hardware Sprite is up to 270 units

high. So if your required image is smaller than this, most of the Sprite area is effectively wasted. Look at the
diagram below, which shows a single hardware Sprite positioned at the centre of a typical screen.

07.01.01

Hardware Sprites

A 16 x 16 hardware sprite

o=

If this hardware Sprite is split into segments, and each segment is assigned to a separate image, the same memory
area of this single Sprite can be used to display up to 16 simultaneous images. Fortunately, the Amiga's hardware
allows each of these segments to be repositioned anywhere on the current line, as illustrated by the next diagram.

Computed sprites

&

&

=

Because there are up to eight 3-colour or four 15-colour Sprites available for AMOS Professional to commandeer
and use, you are given access to dozens of objects on the screen at the same time. However, there is still the size
restriction to be overcome.

By displaying two or more 16-pixel Sprites side by side, larger objects can be created, up to a maximum width of 64
pixels for 15-colour and 128 pixels for 3-colour Sprites. Even if these width limits are exceeded, your programs will
still run, although it is highly likely that your SPRITE command will be completely ignored!

When you use a mixture of 3-colour and 15-colour Sprites on the same screen, it is much safer to assume that the
lower width limit totalling 64 pixels applies. Alternatively, the maximum total line widths of Sprites may be
calculated as follows:

total width = (Width of all 15-colour Sprites)*2 + (Width of all 3-colour Sprites)

07.01.02

Hardware Sprites

By assuming that the total width must always be less than 128 pixels, you will not cause any disasters.

Hardware Sprites versus computed Sprites

The greatest problem when using computed Sprites is that you never know precisely which hardware Sprite is going
to be assigned to any particular object! Each computed Sprite can be instructed from a mixture of hardware Sprites,
and the mixture changes every time the object is moved on the screen.

This can lead to major problems, especially if you need to animate objects that must stay visible in a wide range of
Sprite combinations. In these circumstances it is useful to assign a specific group of hardware Sprites to a single
object, and the SPRITE command allows you to allocate such Sprites directly by using an identification number
between 0 and 7. For Example, the next line allocates hardware Sprite 2 to image number 1, and positions it at
coordinates 200,100:

X> Sprite 2,200,100,1

After a Sprite has been grabbed in this way, it will be completely removed from the computed Sprite system, so
there will be an inevitable reduction in the number of computed Sprites that can be displayed on screen.

If the required image is wider than 16 pixels, AMOS Professional will automatically assign additional hardware
Sprites to this object. These Sprites will be allocated in consecutive order, starting from your original Sprite number.

Look again at the last example line above. Suppose that image number 1 contains a 30 by 20 picture in three colours.
The SPRITE command will automatically grab Sprite number 3 as well as number 2, so any future attempt to
display Sprite number 3 would fail, because it is already in use. You would then be restricted to assigning hardware
Sprites 0,1,4,5,6 and 7 only, and greatly reducing the number of possible computed Sprites.

It is also important to understand that each 15-colour Sprite is actually displayed by using a pair of 3-colour Sprites.
The Amiga's hardware allows you to combine matched pairs of Sprites in the following groups only:

Oand 1,2 and 3,4 and 5, 6 and 7.

So it is vital to assign 15-colour images to even Sprite numbers, or AMOS Professional will be forced to display
your object using the next pair of Sprite numbers, which is a complete waste of a Sprite.

There is a trouble-shooting section at the end of this Chapter, which should answer the most common problems
experienced with Sprites. Meanwhile, please load this ready-made program, which demonstrates the advantages of
using computed Sprites over Bobs:

D> Load "AMOSPro Tutorials:Tutorials/Sprites v _Bobs.AMOS"

07.01.03

Hardware Sprites

The Sprite command

SPRITE

instruction: display a Sprite on the screen
Sprite Sprite number

Sprite Sprite number,hx,hy,image number

The SPRITE command assigns an image to a Sprite, and displays it at the selected hardware coordinates.

The Sprite number can range from 0 to 63. Normally, Sprite number zero is not available because it is already
allocated to the mouse pointer. To ensure that you have the maximum number of Sprites at your disposal, remove the
mouse pointer from the screen with HIDE ON. Sprite identification numbers from 0 to 7 refer to the eight hardware
Sprites whose limitations have already been explained. You will probably want to make use of the AMOS
Professional computed Sprites in your programs instead, and these are assigned the numbers from 8 to 63.

The hardware coordinates hx and hy set the position at which the Sprite will be displayed. Since Sprites are totally
independent from the current screen, normal screen coordinates cannot be used for this purpose. Instead, all Sprites
are positioned by special hardware coordinates as used by the mouse pointer and the SCREEN DISPLAY command.
Hardware coordinates can be converted from normal screen coordinates by the X HARD and Y HARD functions,
which are explained later.

The position of the Sprite is measured from a single spot related to that Sprite, known as the "hot spot". This is
usually taken to be the top left-hand corner of the Sprite, but it can be placed anywhere you like using the HOT
SPOT command. Hot spots are explained in detail near the end of this Chapter.

When the Sprite has been allocated an identification number and given its display coordinates, you must select an
image for the Sprite to display. Images are created using the Object Editor (there is a guided tour of this process in
Chapter 13.2) and deposited in the Object Bank, which is normally memory bank 1. Each image in this bank is
assigned its own number, starting from one. To select an image for a Sprite to display, simply give the appropriate
image number. Sprite images may be installed into your programs using the LOAD command, like this:

X> Load "Sprites.Abk"

Once images have been installed in this way they will be saved along with your AMOS Professional programs
automatically.

The image number and coordinate parameters can be omitted after a SPRITE command, but the appropriate commas
must be included.

07.01.04

Hardware Sprites

For example:

E> Load "AMOSPro Tutorial:Objects/Sprites.Abk"
Flash Off : Get Sprite Palette
Curs Off : Cls O
Sprite 8,200,100,1

Wait Key
Sprite 8,,150,1
Wait Key
Sprite 8,250,,1
Wait Key

Sprite 8,,,2

DEL SPRITE

instruction: delete an image from the Object Bank
Del Sprite number

Del Sprite first To last

The DEL SPRITE command permanently deletes one or more Sprite images from the Object Bank. To erase a
single image, simply give the image number to be deleted, like this:

X> Del Sprite 2

Whenever an image is deleted, all the subsequent images in the Bank are moved up one place in the numerical order.
For instance, if the Bank originally contained four images, the above example would remove image number 2 from
memory, leaving a gap between images 1 and 3. This gap would be filled immediately, as the old image numbers 3
and 4 were shunted up one place, to become the new image numbers 2 and 3.

If more than one image is to be removed from the Bank, you can set the range from the first image to the last after a
DEL SPRITE command. The following example would delete Sprite images 4,5,6 and 7:

X> Del Sprite 4 To 7

After the last image has been deleted from the Object Bank, the entire Bank is erased automatically.

INS SPRITE

instruction: insert a blank Sprite image into the Object bank
Ins Sprite number

Ins Sprite first To last

INS SPRITE inserts a blank image at the numbered position in the current Object Bank. All of the images after this
numbered position will then be moved down one place in the numerical order. The second version of this command
allows you to create several spaces in a single operation, by giving the range of new gaps between the first and last

image numbers that you specify.

07.01.05

Hardware Sprites

Any of these new image spaces are completely empty, and so cannot be allocated to a Sprite Or displayed directly
on screen while they are still blank. An actual image must first be grabbed into the Object Bank, using a GET
SPRITE or GET BOB command. If this is not done, the appropriate error message will be given as soon as you try
to access the empty image.

Both DEL SPRITE and INS SPRITE are provided to be used with the GET BOB and GET SPRITE commands.
They allow you to modify and adjust your Sprite images from inside AMOS Professional programs, with complete
freedom.

The Sprite Palette

Although Sprites are independent of the screen, the colours that they use are definitely not! So before displaying a
Sprite image it is essential to grab the correct colours. All colours are taken from the standard 32 colour registers
provided by the Amiga's hardware, but the precise registers to be used depend on the type of Sprite.

15-colour Sprites. These use colour registers 16 to 31, which may not be needed by 16-colour screens, but are vital
when 32-colour and 64-colour modes are in use, ensuring that these Sprite images are.totally consistent with the
screen background.

If you employ background screen graphics created with a commercial drawing package such as Deluxe Paint, you
must ensure that your Sprite images use exactly the same colour values as the screen image. This presents no
problem to AMOS Professional, and is achieved as follows.

Load the colour palette from an IFF file of the screen image directly into the AMOS Professional Object Editor,
using the [Grabber] option to select any part of the picture. Please see Chapter 13.2 for full details. The correct
colour values are copied directly to the Sprite Bank, and will be saved along with your images automatically.

It is also possible to display 32-colour image files on a 16-colour screen. Because the Bob and Sprite palettes are
completely separate, colours 0 to 15 can be reserved for Bobs and colours 16 to 31 for Sprites.

3-colour Sprites. Things are a little more complex when using these, because each pair of Sprites uses its own set of
colour registers, as follows:

Hardware Sprites Transparent Colour registers
0 and 1 16 17,18,19
2 and 3 20 21,22,23
4 and 5 24 25,26,27
6 and 7 28 29,30,31

Note that for each pair of Sprites there is one register that is assumed to be transparent, and three colour registers.

As has been explained, the hardware sprites used to create computed sprites will vary during the course of your
program, so it is vital that the three colours used by each pair of hardware

07.01.06

Hardware Sprites

sprites are exactly the same. A procedure is provided to accomplish this, and it may be found along with a host of
other useful procedures, in Appendix C.

GET SPRITE PALETTE

instruction: grab sprite colours into screen
Get Sprite Palette

Get Sprite Palette mask

This command copies the colour values used by your Sprite and Bob images and loads them into the current screen.
It is an intelligent instruction, so if 16-colour screens are in use, values are automatically copied into colour registers
16 to 31. This means that you can use the same images for either Bobs or Sprites with no risk of colour clashes!
Here is an example:

E> Load "AMOSPro Tutorial:Objects/Sprites.Abk"
Curs Off : Flash Off : Cls O
Get Sprite Palette
Rem Set computed Sprite at hardware coords 128,50 using image 1
Sprite 8,128,50,1
Wait Key

The optional mask parameter allows the colour selection to be limited. Each colour is represented by a single digit in
a 32-digit bit mask. If the appropriate digit is set to 1, the colour is copied from the Object Bank. Any colours to be
omitted (masked) should have their digit set to 0. The following example copies colours 0 to 3 from the Object Bank
into the screen:

X> Get Sprite Palette %0000000000001111
Because the mask is entered as a normal number, either hexadecimal or decimal modes can also be used:
X> Get Sprite Palette S$SFFFF0000

Please note that the GET BOB PALETTE and GET OBJECT PALETTE instructions perform an identical task to
the GET SPRITE PALETTE command.

GET SPRITE

instruction: grab screen image into the Object Bank
Get Sprite image number,x1,yl To x2,y2

Get Sprite screen number,image number,x1,yl To x2,y2

Use this command to grab images directly from the screen and transform them into Sprites. Simply define the new
image number, then give the coordinates, from top left-hand to bottom right-hand corner, of the rectangular area to
be loaded into the Sprite Bank. The image will be grabbed from the current screen unless an optional screen number
is specified.

Provided that the given coordinates lie inside of existing screen borders, there are no limitations to the area that can
be grabbed in this way.

07.01.07

Hardware Sprites

If there is no existing Sprite with the selected number, it will be created automatically. Similarly, the Sprite Bank
will be reserved by AMOS Professional, if it is not already defined.

It should be noted that the GET BOB instruction is identical to GET SPRITE, making them interchangeable.

SET SPRITE BUFFER
instruction: set maximum height of Sprites
Set Sprite Buffer number

This command allocates extra memory for hardware and computed Sprites to work within. Although each hardware
Sprite can be up to 270 lines in height, AMOS Professional reserves sufficient memory for 128 lines, as the default
allocation.

If you are using computed Sprites, it is more practical to extend the SET SPRITE BUFFER number to a larger
value. This is economical on memory, since each line only consumes 96 bytes. Thus a maximum height value of 256
would require about 12k of extra memory.

Be warned that this command erases all current Sprite assignments, as well as re-setting the mouse pointer, so it
must be used at the beginning of your programs! For example, the following line would be placed at the start of
your listing:

X> Set Sprite Buffer 256

Sprite Commands

SPRITE UPDATE

instruction: control Sprite movements
Sprite Update

Sprite Update Off

Sprite Update On

The SPRITE UPDATE family of commands provide total control of Sprite movements. Normally, when a Sprite is
moved its position is updated automatically during the next vertical blank period. Please see WAIT VBL if this
needs explaining. However, when many Sprites are moved with the SPRITE command, updates will happen before
all of the Sprites have been successfully repositioned, which can result in jerky patterns of movement. In these
circumstances, the automatic updating system can be turned off with a SPRITE UPDATE OFF command.

When the Sprites have been moved successtully, a call to SPRITE UPDATE will reposition any Sprites that have
been moved since the last update. Alternatively, SPRITE UPDATE ON returns to the default status of automatic
updating.

SPRITE OFF

instruction: remove Sprites from screen
Sprite Off

Sprite Off number

07.01.08

Hardware Sprites

The SPRITE OFF command removes all sprites from your display, and all current Sprite movements are aborted. To
re-start them, the movement pattern must be initialised again. (Please see the AMAL facilities explained in Chapter
7.6). If an optional Sprite number is given, only that Sprite will be de-activated and removed from the screen.

Please note that Sprites are de-activated every time the AMOS Professional editor is called up. Sprites are
automatically returned to their original positions the next time Direct Mode is entered.

X SPRITE
function: return x-coordinate of a Sprite
x=X Sprite(number)

This function returns the current x-coordinate of the Sprite whose number is given in brackets. The Sprite number
can range from 0 to 63, and positions are given in hardware coordinates. Use X SPRITE to check if a Sprite has
passed off the edge of the screen.

Y SPRITE
function: return y-coordinate of a Sprite
y=Y Sprite(number)

This gives the vertical position of the specified Sprite, measured in hardware coordinates.

I SPRITE
function: return current image number of a Sprite
image=I Sprite(number)

This function returns the current image number being used by the specified Sprite. If the Sprite is not displayed, a
value of zero will be returned.

Conversion Functions

X SCREEN

function: convert hardware x-coordinate to screen x-coordinate
x=X Screen(xcoordinate)

x=X Screen(screen number,xcoordinate)

Y SCREEN

function: convert hardware y-coordinate to screen y-coordinate
y=Y Screen(ycoordinate)

y=Y Screen(screen number,ycoordinate)

These functions transform a hardware coordinate into a screen coordinate, relative to the current screen. If the
hardware coordinates lie outside of the screen, both functions will return relative offsets from the screen boundaries.
An optional screen number may be included, in which case the coordinates will be returned relative to that screen.

07.01.09

Hardware Sprites

X HARD

function: convert screen x-coordinate into hardware x-coordinate
x=X Hard(xcoordinate)

x=X Hard(screen number,xcoordinate)

Y HARD

function: convert screen y-coordinate into hardware y-coordinate
y=Y Hard(ycoordinate)

y=Y Hard(screen number,ycoordinate)

These functions convert screen coordinates into hardware coordinates, relative to the current screen. As with X
SCREEN and Y SCREEN, an optional screen number can be given, and coordinates will be returned relative to that
screen.

With all four of the above functions, sensible values can only be returned when the relevant screen has been fully
initialised. Both the SCREEN OPEN and SCREEN DISPLAY commands only come into effect from the next
vertical blank, and the following examples demonstrate that the correct coordinate values (in this case 128,50) are
only returned after a WAIT VBL command.

E> Screen Open 0,320,255,16,Lowres
Print X Hard(0,0); Y Hard(0,0)

Now try the correct version:

E> Screen Open 0,320,255,16,Lowres
Wait Vbl
Print X Hard(0,0); Y Hard(0,0)

The default screen is initially located at hardware coordinates (128,50), and if you find the whole business of
hardware coordinates and screen coordinates tiresome, you can bypass the entire conversion system.

By setting the HOT SPOT of your Sprite images to (-128,-50), the reference point for all position calculations is
removed to the far corner of the display. Once an image has been prepared in this way, it can be assigned to a Sprite
and moved around using normal screen coordinates. For example:

X> Hot Spot 1,-128,-50: Rem Set up hot spot
Sprite 8,160,100,1 : Rem Sprite 8 to screen coords 160,100

The Hot Spot
Whenever an image is drawn on screen using the SPRITE or BOB command, it is positioned using an invisible
reference point known as the "hot spot". This reference point is then used for all coordinate calculations.

07.01.10

Hardware Sprites

HOT SPOT

instruction: set reference point for all coordinate calculations
Hot Spot image number,x,y

Hot Spot image number,pre-set value

The HOT SPOT command sets the hot spot of an image stored in the current Object Bank. The hot spot x,y-offset is
measured from the top left-hand corner of the image, and is added to those coordinates before use, as illustrated in
the following diagram:

0 X 160 - 319

¥ Top left
of sprite

o

1005

A sprite positioned at 160,100
199 with a central hot spot

It is perfectly legal to position the hot spot outside of the current screen display. This can be used for automatic
conversion of all screen coordinates, as explained above, or to set up a games sequence with Sprites appearing from
off-screen.

There is another version of this instruction, allowing automatic positioning of the hot spot to any one of nine pre-set
positions. These positions are shown in the following diagram, with the central point of the Object image
represented by the value $11. The value for a pre-set hot spot at the top right-hand corner of the image is $20, for
the bottom left-hand corner $02, and so on.

Pre-set Hot Spot values

The Sprite Doctor
The final part of this Chapter contains some instant diagnoses and remedies for common Sprite illnesses!

Problem: I can't display hardware Sprite zero. It does not want to appear.

Remedy: Hardware Sprite zero is already allocated to the mouse pointer. Use HIDE ON to remove the mouse
pointer from the screen, and try again.

07.01.11

Hardware Sprites

Problem: Whenever the distance between my computed Sprites exceeds about half the screen, the lower ones
vanish.

Remedy: Although hardware Sprites can be a maximum of 270 units high, the default setting is 128. Increase the
height using SET SPRITE BUFFER by placing the following line at the start of your program:

Set Sprite Buffer 256

Problem: How do I display 15-colour Sprites on a 32 or 64-colour screen?
Remedy: Create your images in 32-colour mode, and draw your Sprites using colour numbers 16 to 31. When these
images are loaded into your program, the Sprites will be displayed correctly.

Problem: When I try to move Sprites with AMAL, some of the objects disappear at random.

Remedy: The total width of your Sprites exceeds the maximum of 64. You should read the User Guide more
thoroughly! Replace some of your larger Sprites with Bobs to free up as many component hardware Sprites as
possible. Alternatively, reduce the total number of Sprites on the screen and try using a small number of fast objects
instead of a large number of slower ones.

Problem: When I move the screen with SCREEN OFFSET and SCREEN DISPLAY, my Sprites go most peculiar.
Remedy: There is a hardware confrontation between the Sprite system and the Display system, probably because
AMOS Professional is stretching your Amiga to its absolute limits! Reduce the load on the system as follows. At the
start of your program, just after the SET SPRITE BUFFER command, define hardware Sprites 6 and 7 using the
SPRITE command. Now assign these Sprites to negative coordinates, and position them off the screen. It is now
impossible to use them for computed Sprites, and if they are never displayed on the screen during your scrolling
operations, your problem is solved.

07.01.12

Blitter Objects

In this Chapter you will learn how to take full advantage of the Amiga's "Blitter" chip, which can copy large sections
of a screen almost instantaneously.

At its fastest, the Blitter can move a million screen points per second, which is the equivalent of a dozen graphic
screens. AMOS Professional exploits this facility for the incredible speed achieved in commands like SCREEN
COPY, but the Blitter is capable of far more than simple graphics.

Professional animations are readily available, using special "Blitter Objects" known as "Bobs". Bobs can be
displayed at any point on the screen and freely moved over the entire screen area, without disturbing any existing
graphics. They may be guided, tested for collisions and even animated with AMAL, exactly like Sprites.

The main advantage of Bobs over Sprites is that they are far easier to use. There is no imit to the size or number of
Bobs, and they are stored as part of the current screen, so all positions are measured in simple screen coordinates. As
has been explained in the previous Chapter, Sprites only work in certain combinations, but Bobs may be displayed
with no restrictions at all, at any position, and in vast numbers. The only limit is the amount of available memory!
The other main advantage over Sprites is that Bobs can have up to 64 colours.

Naturally, all this power carries a price tag, and although Bobs are more flexible than Sprites, they are also slightly
slower and consume additional memory. So the ideal solution is to use both Sprites and Bobs to their full advantage
in the same program. They make a superb team, just like your Amiga, AMOS Professional and you!

Displaying a Bob
Images to be used as Bobs are stored in memory Bank 1, and are each referred to by a simple number, which ranges
from 1 up to the maximum number of objects in the bank. Load up some images now, like this:

E> Load "AMOSPro Tutorial:Objects/Bobs.abk"

To find how many objects are in memory bank 1, use the LENGTH function for an instant read- out. Type this next
line from Direct Mode:

D> Print Length (1)

This Object Bank is also used for any Sprite images, so the same objects can be displayed as Bobs or Sprites with
great ease. To create a Bob, the image of an object is taken from the bank, and allocated for display as follows.

BOB

instruction: display a Bob on screen
Bob number,image

Bob number,x,y,image

Each Bob must be given an identification number from 0 to 63. As a default, only 64 Bobs may be displayed on
screen at once, but this limit can be increased if necessary.

07.02.01

Blitter Objects

Unlike Sprites, which use complex hardware coordinates, Bobs are displayed using standard screen coordinates,
measured from the top left-hand corner of the current screen. Set the position of your new Bob by giving it screen
coordinates relative to the hot spot of your chosen image number. Hot spots are explained at the end of the last
Chapter.

If the coordinates lie outside of the existing screen area, the Bob will not be displayed. So objects can be initialised
off screen, ready to be moved into place during the course of your program.

Once a Bob has been positioned on screen, the coordinate values become optional. The values of any coordinate
parameters that are omitted will be remembered from the last time they were set. In Chapter 7.6 it is explained how
this technique is valuable for animating Bobs with AMAL, because it allows objects to be moved effortlessly,
without disturbing any existing animation sequences. It is vital to include all commas in their normal positions if
coordinate values are omitted, or a syntax error will be reported. For example:

D> Bob 1,160,100,1 : Rem Position Bob 1 at 160,100 using imagel
Bob 1,,150,1 : Rem Move Bob 1 down 50 pixels
Bob 1,110,,1 : Rem Move Bob 1 50 pixels left
Bob 1,,,2 : Rem Display new image 2 at Bob 1 current position

Before examining the next instant demonstration program, here is a step-by-step technique for correctly displaying a
Bob.

 First, some images must be made available for Bobs to use, with a call to LOAD the appropriate filename.
Once images have been loaded, they are saved as part of your Basic program automatically.
« If you intend to load a picture for use as a background screen, now is the time to do it. Use a line such as:

X> Load Iff "Picture.IFF"

Alternatively, the default screen can be prepared by removing the flashing cursor from the display and filling the
display with a large block of colour, usually black. For example:

X> Curs Off: Flash Off : Cls O

« Now the correct image colours should be grabbed from the Object Bank. Note that if Bobs are to be displayed
against an existing background screen, you will need to ensure that the images use exactly the same colour
values as your picture, otherwise serious colour clashes will be generated. GET BOB PALETTE can be called
if you are using Bobs on their own, or call GET SPRITE PALETTE for use with either Sprites or Bobs.

« The automatic AMOS Professional "double buffering" system should now be engaged, with a simple
DOUBLE BUFFER command. The theory and practice of this is explained later, but in

07.02.02

Blitter Objects

essence, double buffering creates an invisible copy of the current screen where drawing operations take place,
resulting in beautifully smooth movement effects.

« Finally, your Bobs are assigned their individual starting positions. This could be a simple series of BOB
commands, or a complex pattern of off-screen starting points for each level of an arcade game.

General Bob Commands

BOB OFF

instruction: remove a Bob from display
Bob Off

Bob Off number

Use this command to remove all Bobs from the screen simultaneously. If a Bob number is specified, only that Bob
will be extinguished. For example:

X> Bob Off 1: Rem Remove Bobl only
Bob Off : Rem Remove all Bobs from screen

The BOB OFF instruction also turns off any animation or collision routines associated with these Bobs.

X BOB
function: get x-coordinate of a Bob
x-coordinate=X Bob(number)

Y BOB
function: get y-coordinate of a Bob
y-coordinate=Y Bob(number)

It is not difficult to keep track of Bobs under normal circumstances, but if Bobs are moved with AMAL, their
coordinates can vary unpredictably. In which case, the X BOB and Y BOB functions may be used to get a snapshot
of their current position, by returning the screen coordinates of your selected Bob. Specify the number of the chosen
Bob on screen, and the appropriate coordinate will be returned, as measured from the top left-hand corner of the
screen to the hot spot of the current image. For example:

E> Load "AMOSPro Tutorial:Objects/Bobs.abk"
Curs Off : Cls 0: Rem Set up screen
Flash Off : Get Bob Palette : Rem Grab Bob colours from image bank
Double Buffer : Rem Engage double buffering
Autoback 1: Rem Engage fast drawing mode
Do
Rem Move Bobl with mouse
Rem Convert hardware coords to screen coords
Bob 1,X Screen (X Mouse),Y Screen (Y Mouse),1
Rem Print new location on screen
Locate 0,0 : Print X Bob(1l);" ";Y Bob(l);" ";
Loop

07.02.03

Blitter Objects

AMOS Professional provides many alternative methods of moving Bobs, and each Bob can display a sequence of
different images to create animation. When animating Bobs with AMAL, it is possible to loose track of the precise
image currently displayed, so the next function has been supplied to rectify this.

I BOB
function: get image number used by a Bob
image=IBob(number)

I BOB returns the number of the image currently assigned to the specified Bob number. If the Bob number you want
to examine does not exist, an illegal function error will be given, so it is vital to define the Bob correctly before
calling I BOB. Here is an example:

E> Load "AMOSPro Tutorial:0Objects/Bobs.abk"
Flash Off : Get Bob Palette : Double Buffer : Autoback 0
Bob 1,160,100,1: Rem Display Bob 1 at centre of screen
Do
For IMAGE=1] To Length(l) : Rem Create simple animation
Rem Move Bob 1 with the mouse
Bob 1,X Screen (X Mouse),Y Screen (Y Mouse), IMAGE
For W=0 To 3 : Wait Vbl : Next W
Rem Display image number on screen
Locate 0,0 : Print "Image ";I Bob(l);" ";
Next IMAGE
Loop

GET BOB PALETTE

instruction: load image colours into current screen
Get Bob Palette

Get Bob Palette mask

This command loads the whole colour palette used for your Bobs into the current screen. A mask can be added if
you like, which will load a selection of these colours only. Each individual colour is represented by one "bit" of the
mask being set to a zero (off) or a one (on). Colours run from right to left, so that colour zero is represented by the
bit at the right-hand end of the mask, colour 1 is second from the right, and so on. Supposing there are 16 colours in
your Bob palette, you would copy the first four colours like this:

X> Get Bob Palette %0000000000001111

Unmasking Bobs

NO MASK
instruction: remove colour zero mask from Bob
No Mask number

07.02.04

Blitter Objects

A "mask" means that the background colour (colour zero) around a Bob is made transparent, so t hat the screen
graphics show through. The mask is also used by certain collision detection routines. A mask is automatically set up
for every Bob, and the NO MASK command takes away this mask, so that the entire Bob image is drawn on the
screen, including its original background colour and any other graphics in colour zero. To remove a mask, simply
use this command followed by the number of the Bob image you are interested in.

Never remove a mask from a Bob while it is being displayed on screen, or its image will be scrambled! Remember
to always use the BOB OFF command first.

Bob Priority

It is important to understand that every Bob automatically possesses a priority of importance, and that this priority is
based on the Bob's number. So a Bob carries a priority value from 0 to 63, and AMOS Professional uses this value
to decide in which order Bobs are displayed and which Bobs barge their way in front of others when moving around
the screen.

The general rule is that a Bob with a higher priority number is displayed in front of one with a lower priority
number. For example, Bob 5 would cut in front of Bob 4, but be obscured if Bob 6 crossed its path. So it is clear that
this priority system should always be remembered when you number your Bobs.

AMOS Professional allows changes in the priority system to suit your needs, this first system offers an alternative
based not on Bob numbers, but on the position of Bobs on the screen.

PRIORITY ON
instruction: set Bob priority to highest y-coordinate
Priority On

PRIORITY OFF
instruction: set Bob priority to default status
Priority Off

When PRIORITY ON is used, Bobs with the highest y-coordinates take priority on the screen. It is usually best to
set hot spots at the bottom of Bobs to exploit this priority, and some superb perspective effects can be created. All
that is needed to re-set the original Bob number priorities is to use the PRIORITY OFF command.

PRIORITY REVERSE ON
instruction: toggle on Reverse Priority of Bobs
Priority Reverse On

PRIORITY REVERSE OFF
instruction: toggle off Reverse Priority of Bobs
Priority Reverse Off

07.02.05

Blitter Objects

The PRIORITY REVERSE ON command changes around the entire priority table based on Bob numbers. Not only
does it give a lower Bob number priority over a higher Bob number, when used with PRIORITY ON it also gives
priority to a Bob with the lowest y-coordinate. As you would expect, PRIORITY REVERSE OFF sets the priority
system back to normal.

Bobs and screens
AMOS Professional offers a full range of commands to allow Bobs and screens to interact.

LIMIT BOB

instruction: limit Bob to part of screen
Limit Bob x1 ,yl To x2,y2

Limit Bob number,x1,y1 To x2,y2
Limit Bob

This command keeps all Bobs restricted to moving inside an invisible rectangular area of the screen, whose
coordinates are set by the usual top left to bottom right-hand corner coordinates. If LIMIT BOB is followed with a
Bob number, then only that Bob becomes restricted by the boundaries of the rectangle.

Note that the width of the rectangle must always be wider than the width of the Bob, and that the x -coordinates are
always rounded up to the nearest 16-pixel boundary. To keep Bob number 1 trapped inside an area, you would use
something like this:

X> Limit Bob 1,10,0 To 320,100

Remember that a Bob must be called up with the BOB command before LIMIT BOB is used, otherwise the
limitation will have no effect. To restore a Bob's freedom to move around the whole screen, use the command
without any coordinates, like this:

X> Limit Bob

DOUBLE BUFFER
instruction: activate Double Buffering system
Double Buffer

Throughout this Chapter, extensive reference is made to the technique known as "double buffering". The DOUBLE
BUFFER command creates an invisible copy of the current screen and stores it as a "logical screen". All graphics
operations, including Bob movements, are now performed directly on this logical screen, without disturbing your
existing display at all. This is because the existing display on your television screen is taken straight from the
original screen area, now called the "physical screen".

Once the image has been re-drawn, the logical screen and physical screen are swapped over. The old logical screen
is flicked onto the display, and the old physical screen is hidden away to become the new logical screen. The entire
process now cycles continuously, producing a solid, smooth display, even when dozens of Bobs are moving on the
same screen.

07.02.06

Blitter Objects

Any complexities of this technique are completely automatic, so once DOUBLE BUFFER has been engaged, you
can relax.

Since hardware Sprites are overlaid directly onto your television display, double buffering will hive no effect at all
on any existing Sprite animations.

The double buffering system works equally well in all of the Amiga's graphics modes, and can also be used in
conjunction with dual playfields. You should be aware that double buffering requires two separate areas of memory,
one for the logical and one for the physical screen. So it will double the amount of memory required, for example an
extra 32k will be needed for a standard 16-colour screen. This means that if you try and DOUBLE BUFFER too
many screens, available memory will be exhausted.

In practice, double buffering is invaluable, and the additional memory required is well spent. It can be exploited for
advanced three-dimensional routines, and is especially useful for scrolling screen effects, because the new areas of
display are copied straight into the invisible background without corrupting the current display.

As an optional extra, AMOS Professional provides total control over the entire DOUBLE BUFFER system, and a
full explanation may be found in the next Chapter. For a rapid insight into the effect of not using DOUBLE
BUFFER, make sure you run the HELP_ 26 demonstration program.

That demonstration produces a horrible flickering effect. Whenever a Bob moves around the screen, the graphics
beneath it are replaced at their original position. Unfortunately, since Bobs are updated at the same time as the screen
images, this sort of flickering effect is generated. By including a DOUBLE BUFFER command, screens are
switched after the drawing process is complete, and as explained above, the process is completely automatic.

GET BOB

instruction: grab an image from part of screen
Get Bob image,x1,x2 To x2,y2

Get Bob screen number,image,x1,y1 To x2,y2

This command grabs a selected part from the current screen and copies it straight into the Object Bank. After giving
the image number to be created, set the area to be grabbed from the top left-hand corner to the bottom right-hand
coordinates. If your chosen image number already exists, the existing image will be replaced by the new picture,
otherwise the new picture will be added to the bank.

An optional screen number may be given immediately after the GET BOB command, allowing an image to be
grabbed from a specific screen. Here is an example:

E> Curs Off : Cls O : Double Buffer : Flash Off
Text 50,10, "AMOS Professional Basic!"
Get Bob 1,50,0 To 250,20
For B=0 To 180
Bob 1,50,B,1
Wait Vbl
Next B

07.02.07

Blitter Objects

GET BOB is an extremely useful command, allowing any section of a screen to be loaded into a Bob, and then
manipulated with the AMAL system. You can even write your own object editor from start to finish! It is also
possible to create and modify Bob images from AMOS Professional Basic. This allows, you to produce stand-alone
program listings that will run without the need for external image files. Try the next example:

E> Double Buffer : Flash Off : Curs Off
Rem Draw an expanding circle and grab it as a Bob
For C=1 To 15
Ink 5 :Circle 16,16,C: Paint 16,16
Get Bob C,0,0 To 32,32
Cls 0,0,0 To 32,32

Next C
Rem Animate new Bob image
Do

Add IMAGE,1

If IMAGE>15 Then IMAGE=1

For W=0 To 4: Wait Vbl : Next W: Rem Slow down animation
Rem Assign next image in sequence to Bob 1

Bob 1,X Screen (X Mouse),Y Screen (Y Mouse), IMAGE
Loop

PUT BOB
instruction: put a fixed copy of a Bob on screen
Put Bob number

The PUT BOB command takes the Bob whose number is given and fixes a permanent copy of its image on the
screen, at the current position. This is achieved by preventing the background area beneath the Bob from being re-
drawn. Note that after the image has been copied, the original Bob can be animated and moved with no ill effects.

In actual fact, PUT BOB is included as a support for STOS programmers, who wish to make their old Atari STOS
programs compatible with AMOS Professional. Because it only works with single buffered screens, it is not
particularly useful, and PASTE BOB is recommended as the preferred command. Please see below.

PASTE BOB
instruction: draw an image from Object Bank
Paste Bob x,y,image

PASTE BOB takes an image held in the Object Bank, and draws it straight onto the current screen. Unlike the PUT
BOB command, the image is drawn immediately, so there is no need to add the WAIT VBL commands before
proceeding.

It is important to note that the coordinates for the given image number are measured from the top left-hand corner of
the image, and take no account of the current hot spot setting!

07.02.08

Blitter Objects

PASTE BOB is just like any other graphics instruction, so it does not need a double buffered screen. It can be used
to generate a range of extremely fast graphical operations, and it is also useful for mapping complex displays in
scrolling arcade games. Here is an example:

E> Flash Off : Curs Off : Cis O
Rem The following Palette values go on one line
Palette 0,$100,5200,$300,$400,5$500.5600,$700,$800,
$900, $A00, $B00, $000, $D00, SE00, SFOO
Rem Create some coloured circles for images
For C=1 To 15
Ink C : Circle 16,16,15 : Paint 16,16
Get Bob C,0,0 To 32,32

Next C

Do

Rem Choose a random circle and choose its position
N=Rnd (14)+1 : X=Rnd(320) : Y=Rnd(200)

Rem Paste image on screen at new coordinates
Paste Bob X,Y,N
Loop

Bob Bank Commands

DEL BOB

instruction: delete an image from the Object Bank
Del Bob number

Del Bob first To last

The DEL BOB command permanently deletes one or more Bob images from the Object Bank. To erase a single
image, simply give the image number to be deleted, like this:

X> Del Bob 2

Whenever an image is deleted, all the subsequent images in the Bank are moved up one place in the numerical order.
For instance, if the Bank originally contained four images, the above example would remove image number 2 from
memory, leaving a gap between images 1 and 3. This gap would be filled immediately, as the old image numbers 3
and 4 were shunted up one place, to become the new image numbers 2 and 3.

If more than one image is to be removed from the Bank, you can set the range from the first image to the last after a
DEL BOB command. The following example would delete Bob images 4,5,6 and 7:

X> Del Bob 4 To 7

After the last image has been deleted from the Object Bank, the entire Bank is erased automatically.

07.02.09

Blitter Objects

INS BOB

instruction: insert a blank Bob image into the Object bank
Ins Bob number

Ins Bob first To last

INS BOB inserts a blank image at the numbered position in the current Object Bank. All of the images after this
numbered position will then be moved down one place in the numerical order. The second version of this command
allows you to create several spaces in a single operation, by giving the range of new gaps between the first and last
image numbers that you specify.

Any of these new image spaces are completely empty, and so cannot be allocated to a Bob or displayed directly on
screen while they are still blank. An actual image must first be grabbed into the Object Bank, using a GET SPRITE
or GET BOB command. If this is not done, the appropriate error message will be given as soon as you try to access
the empty image.

Both DEL BOB and INS BOB are provided to be used with the GET BOB and GET SPRITE commands. They
allow you to modify and adjust your Bob images from inside AMOS Professional programs, with complete
freedom. They may be used to create numerous special effects such as interactive screen animations and animated
brushes, as used in Deluxe Paint.

Flipping Bob Images

AMOS Professional is designed to meet every programming need when it comes to animating images. You will
often need to animate mechanical objects and cartoon characters as realistically as possible, so every movement
sequence must be created from a number of images, and each image in the sequence must be carefully drawn using
the Object Editor, ready for smooth animation with AMAL.

Unfortunately, perfectly animated sequences need a great many images, which take up a great deal of memory. To
move the animated character in several directions makes the problem much worse, because each direction needs a
separate sequence of images.

AMOS Professional cuts such waste of memory to a minimum. This is achieved by allowing you to display the same
image in different orientations, so that a character can be mirrored and turned upside down, simply by flipping its
image.

HREV
function: flip an image horizontally
new number=Hrev(image number)

This function reverses an image from left to right, creating a mirror image. Use HREV by specifying the existing

image number (in brackets) to be flipped horizontally, in order to create a new identification number for the reversed
image. This new image number can be freely used with any of the standard Bob commands.

07.02.10

Blitter Objects

Here is an example:

E> Load "AMOSPro Tutorial:Objects/Bobs.abk"™ : Rem Load Bob images from disc
Curs Off.: Cls 0 : Rem Set up screen
Flash Off : Get Bob Palette : Rem Grab Bob colours from image bank
Double Buffer : Rem Engage Double Buffering
For X=360 To -60 Step -4: Rem Move Bob across screen
Bob 1,X,100,2 : Rem Display Bob at a new position
Wait Vbl : Rem Wait for next vertical blank period

Next X

For X=-60 To 400 Step 4: Rem Flip image and move from left to right
Bob 1,X,100,Hrev(2) : Rem Display Bob at new position

Wait Vbl : Rem Wait 50th of second for Vbl

Next X

There is a hexadecimal version of this function, and the value returned by the HREV function is in the following
format:

$800+n

Where $8000 is a "flag" telling AMOS Professional to reverse the Bob whenever it is displayed on screen, and
where n is the number of your image. This technique can be used to flip images directly from an AMAL animation
sequence.

Supposing your original sequence was created with this:
X> "Anim 0, (1,2) (2,2) (3,2) (4,2)"
To reverse these images, either of the following two lines could be used:

X> "Anim 0, ($8000+1,2) ($8000+2,2) ($8000+3,2) ($8000+4,2)™"
X> "Anim 0, ($8001,2) ($8002,2) ($8003,2) ($8004,2)"

When an image is reversed like this, the location of the hot spot is reversed horizontally too. So if the hot spot was
originally in the top left-hand corner, the hot spot of the HREV image will be in the top right-hand corner:
Depending on the image involved, this can have a great effect on the way your image is displayed on screen. Be
careful to position your hot spots sensibly, or avoid any risks by setting them centrally, using the appropriate HOT
SPOT command.

VREV
function: flip an image vertically
new number=Vrev(image number)

VREV is identical to HREV, except that it takes the specified image and turns it upside down before displaying it on

the screen. This is best used for animated objects that move vertically, although comic effects can be achieved with
cartoon characters.

07.02.11

Blitter Objects

As with HREV, there is an equivalent hexadecimal version of the VREV function, which can be used with AMAL
animation strings. The format is:

$4000+n

Where $4000 acts as the reversal flag, and n is the image number. Here are two typical AMAL string of reversed
animation:

X> "Anim 0, ($4000+1,2) ($4000+2,2) ($4000+3,2) ($4000+4,2)™"
X> "Anim 0, ($4001,2) ($4002,2) ($4003,2) ($4004,2)"

REV
function: double-flip an image vertically and horizontally
new number=Rev(image number)

REV combines HREV and VREV into a single function. It takes the image whose number is held in brackets,
reverses it from left to right and then performs another reversal from top to bottom. For example:

E> Load "AMOSPro Tutorial:Objects/Bobs.abk"

Curs Off : Cls O

Flash Off : Get Bob Palette
Double Buffer

For Y=200 To -40 Step -1
Bob 1,Y*2,Y,1
Wait Vbl

Next Y

For Y=-40 To 200

Bob 1,Y*2,Y,Rev (1)

Wait Vbl

Next Y

Don't forget to try the HELP programs for a demonstration. If your own attempts at flipping Bob images cause any
problems, you may wish to consult the Bob Doctor, below.

The Bob Doctor
Here are some free consultations which answer common problems encountered when flipping Bobs.

Problem: When I use flipped Bobs on screen with their original images, my display slows down to a crawl.
Remedy: Do not display the same image in different orientations on screen at the same time. AMOS Professional
flips images during the updating process, just before Bobs are re-drawn on screen. Once reversed, images stay in this
new state until displayed in a different direction. Whenever AMOS Professional flips a reversed image, it first needs
to restore the image to its original state. This takes a great deal of processor time, and slows down your display.

07.02.12

Blitter Objects

Problem: Can I reverse an image for later use, without displaying it on screen?
Remedy: Yes. PASTE BOB works perfectly with flipped images, and can be used directly with HREV, VREV and
REV. If you want to reverse an image quickly, without displaying a Bob, try something like this:

X> Paste Bob 500,500,Vrev (1)

Since the coordinates lie outside of the current screen area, the image is not displayed, but it is still flipped by the
PASTE BOB command.

Problem: I want to flip my Sprites as well as my Bobs?
Remedy: The flip functions do not work with Sprites directly, but there is no problem in displaying a flipped Bob
image as a Sprite. This line would be completely ignored:

X> Sprite 8,300,100,Hrev (5)
But the following routine will solve your problem:

E> Load "AMOSPro Tutorial:Objects/Sprites.abk"
Curs Off : Cls 0 : Flash Off : Get Sprite Palette
Paste Bob 50,50,Vrev(5)
Sprite 8,300,100,5
Wait Vbl

Problem: Can I check for a collision between two copies of the same image, for example, between an original
image and its own mirror-image?

Remedy: Yes, but it is not recommended. If the image's hot spot has been centred the results should be acceptable,
but if the hot spot is asymmetrical you will generate unpredictable problems.

07.02.13

Updating Objects

This Chapter explains the theory behind the AMOS Professional system for updating and drawing moving objects.
As well as a comprehensive range of commands, a completely automatic system is provided for your use.

Moving multiple objects

As a default condition, AMOS Professional manages the position of each and every object on the screen
automatically. The moment that the coordinates of these objects change, they are re- drawn almost instantly. When it
comes to programming complex arcade games, that "almost instantly" can cause problems!

The next two ready-made programs demonstrate a typical problem, first with Sprites and then with Bobs. If you
examine them, you will see that the objects are moving at slightly irregular times, because even though AMOS
Professional is updating their positions at regular intervals, it is not keeping pace with the FOR ... NEXT loop.

To avoid wobbly Sprites and Bobs, all objects must be re-drawn at the same instant in your program, and AMOS
Professional provides three commands for this purpose. SPRITE UPDATE, is to be used for updating Sprites, BOB
UPDATE displays Blitter Objects and the UPDATE command re-draws both Sprites and Bobs in the same
operation.

Before calling any of these commands, the automatic updating system must be disengaged using the relevant
command, SPRITE UPDATE OFF, BOB UPDATE OFF or UPDATE OFF, as appropriate. Here are two working
examples to type in yourself:

E> Load "AMOSPro Tutorial:Objects/Sprites.Abk"
Curs Off : Flash Off : Cls O
Set Sprite Buffer 256
Hide On
Get Sprite Palette
Sprite Update Off
For X=X Hard(0) To X Hard(330)

For S=0 To 8
Sprite S+8,X,S*25+50,2
Next S
Sprite Update : Wait Vbl
Next X

E> Load "AMOSPro Tutorial:Objects/Bobs.Abk"
Curs Off : Flash Off : Cls O
Double Buffer
Get Bob Palette
Bob Update Off
For X=0 To 330

For B=0 To 1
Bob B,X,B*90,2
Next B
Bob Update
Wait Vbl
Next X

07.03.01

Updating Objects

Displaying objects over a changing background

When objects need to be displayed against a rapidly changing background picture, other problems can occur. The
most important thing to understand is that although they can hold the same images, Sprites and Bobs are completely
different from one another. The following tables set out these differences.

Sprites

« exist independently in the Amiga's memory

« are created by the Amiga's DMA hardware

« are stored independently from the screen, in a separate memory area
« use hardware coordinates

« do not exist independently, their appearance on screen is all there is!
« are created by software using the Blitter chip

« are stored as part of the current display

« use screen coordinates

This has far reaching implications for your programming, and is the crucial reason for the entire DOUBLE BUFFER
system. It is the complete independence of Sprites that make them so useful.

AMOS Professional allows you to use Bobs with animated screens, and the next section explains how screens are
updated to permit this.

The update process

This explanation of the Bob movement system is very detailed. If you are not interested in the theory, then the BOB
CLEAR and BOB DRAW commands are explained later in this Chapter, and will be enough to allow you to
proceed.

The updating of single buffered screens will now be examined. Supposing you want to display a single Witter
Object on the screen. The following steps need to be undertaken:

« Draw up the display screen as usual.

« Discover the start position where the Bob is going to be displayed, and establish the background area
underneath the Bob.

« Copy this background area to a safe location in memory.

« Display the Bob over the original graphics in the target area, using the appropriate image from the Object
Bank.

« Discover the next position where the Bob is going to move.

« Clear the Bob from its current position, by displaying the safely copied background image at its original
screen location.

« Examine each Bob in turn to see if it has moved since the previous update. If so, make a copy of the original
screen image at the new coordinates.

« Finally, update by re-drawing the Bob at its new screen position.

07.03.02

Updating Objects

If you are using double buffered screens, a separate copy of the background area is created for each of the two
screens. At the end of a display routine, the logical and physical screens are swapped around by the system, to
ensure that these two screens are perfectly synchronised. All the time that the contents of an animated screen stay
completely still, there can be no problems with updating a static image. Unfortunately, as soon as the contents of a
screen changes, the saved sections of the previous picture will be copied straight onto the updated screen, and
corrupt the picture. This can only be solved if all of the standard drawing commands are synchronised with both the
physical and logical screens, and AMOS Professional achieves this by means of the powerful AUTOBACK system.

AUTOBACK is extremely intelligent and completely automatic, but it can only synchronise graphics and text
commands. If you wish to manipulate the screen directly with SCREEN COPY or SCROLL, you must handle the
process yourself. In other words, you will have to keep the logical and physical screens in step with one another and
perform exactly the same operations in both screens.

This routine demonstrates the danger of flicking between these screens when different items are held in the two
components of double buffering:

E> Double Buffer
Autoback 0

Do
Paper 4 : Print "Hello from the first screen"
Screen Swap : Wait Vbl
Paper 6 : Print "Greetings from screen two"
Screen Swap : Wait Vbl

Loop

The updating commands
Under normal circumstances, AMOS Professional displays all Bobs at once. So if any Bob coordinates are changed,
that Bob can be expected to appear at its new position immediately.

Unfortunately, the Amiga's hardware is only capable of re-drawing a limited number of objects on screen in any
single display cycle. This means that if you try and move several Bobs at once, it is almost inevitable that some of
those objects will be re-positioned at slightly different times. This phenomenon generates unpleasant jerky
movements. Thankfully, AMOS Professional provides a simple solution to this problem.

BOB UPDATE

instruction: move many Bobs simultaneously
Bob Update

Bob Update Off

Bob Update On

BOB UPDATE performs all Bob movements in a single, mighty burst, so all objects are moved at the same instant

in your program. The resulting movement effects are now incredibly smooth, even with dozens of objects on screen
at once. BOB UPDATE is extremely easy to use, as the following technique explains.

07.03.03

Updating Objects

« First, turn off the automatic system with BOB UPDATE OFF

« Execute your main loop as normal.

« Now call a BOB UPDATE command at the point when objects are to be drawn on screen. This command
automatically flips the results onto the display, using the internal equivalent of a SCREEN SWAP.

« Finally, wait for the updates to be completed, by using WAIT VBL.

BOB UPDATE is now used as the standard technique in the vast majority of AMOS arcade games.

If you need to restore the re-drawing system to its default status, BOB UPDATE ON sets the situation back to
normal. One word of warning though, if you are already swapping the screens manually with SCREEN SWAP, use
BOB UPDATE carefully, because it will switch between the logical and physical screens immediately after your
Bobs have been updated. The simplest remedy for any problems this may cause is to use BOB CLEAR and BOB
DRAW instead. These are explained later.

SPRITE UPDATE

instruction: move all Sprites at once
Sprite Update

Sprite Update Off

Sprite Update On

You may want to remind yourself of this family of commands, which are explained in Chapter 7.1. They parallel the
BOB UPDATE commands, and are used in the same way.

You are recommended to add a WAIT VBL instruction after each SPRITE UPDATE, to make sure that Sprite
movements are perfectly synchronised with the existing screen display.

UPDATE

instruction: move all objects at once
Update

Update Off

Update On

The UPDATE commands are a combination of the BOB UPDATE and SPRITE UPDATE families, and they are
used to re-draw all objects on the screen in a single operation. UPDATE OFF turns off the automatic re-drawing
system, so that any Bob or Sprite commands will appear to be completely ignored. In actual fact, they are still going
on invisibly, in the background.

UPDATE displays any objects which have moved since the last update. You are recommended to add a WAIT VBL
instruction to ensure a smooth effect.

UPDATE ON returns the updating system back to the original automatic setting.

07.03.04

Updating Objects

BOB CLEAR
instruction: clear all Bobs from the screen
Bob Clear

BOB DRAW
instruction: re-draw all Bobs on screen
Bob Draw

This pair of commands is used to synchronise Bob updates with complex screen movements, and generate superbly
smooth scrolling screen effects. The technique is achieved by the following steps.

« Remove all Bobs from the logical screen display with BOB CLEAR. Background areas are copied from their
invisible hiding places in memory, and the display is returned to its original condition.

« Each Bob is now examined in turn, and checked to see if it has been repositioned. If so, the area beneath the
new coordinates are copied invisibly, as they will be needed to return the screen back to normal, when the
Bob is next moved. You can now perform your drawing operations as required, and move your Bobs to any
point on the screen.

« Now use BOB DRAW to re-draw any Bobs that have moved at their new screen coordinates, using the
appropriate image from the Object Bank.

Note that BOB CLEAR and BOB DRAW will only work on the current logical screen, so if DOUBLE BUFFER has
been activated, a SCREEN SWAP command will be needed to call the relevant display, as follows:

X> Screen Swap : Wait Vbl
Also remember to turn off the automatic updating system completely before use. Here is the correct procedure.
e Turn off the AUTOBACK system to stop the synchronisation between your graphics and Bobs, like this:

Autoback 0

« Now that all graphical operations have been forced to work with the logical screen, turn off the standard
updating system, with BOB UPDATE OFF.

« Next add a BOB CLEAR command at the start of your main loop. You can now draw your graphics on
screen, and move your objects as required.

« Finally, re-draw your objects at their new positions using BOB DRAW.

07.03.05

Updating Objects

If you are using double buffering, you must make sure that there is a genuine connection between the logical and
physical screens. To achieve smooth graphics, there must be a sensible progression from screen to screen, otherwise
flickering distortions will be displayed.

When scrolling the playing area of a computer game, it is often possible to ensure that screens are already in step, so
BOB CLEAR and BOB DRAW can be used without any problems. In other situations, you may need to make
radical changes from screen to screen, so ensure that these are made both copies of the current screen.

The Autoback command

The standard Bob routines only work if the logical and physical screens are in perfect harmony. The instant that text
or graphics are drawn, or the SCREEN COPY command is used, the two screens fall out of step with one another,
ruining any smooth effects. In the case of SCREEN COPY, you must take control over the system with the BOB
DRAW and BOB CLEAR commands, but when using standard graphics commands, the situation is much easier.

AMOS Professional includes a powerful feature that automatically synchronises all text and graphics operations with
all Bob updates. This means that once DOUBLE BUFFER is activated, graphics and text can be displayed as
normal. This is the principle of the AUTOBACK system.

AUTOBACK
instruction: set mode for graphics operations on double buffered screen
Autoback mode

There are three AUTOBACK modes, and you can toggle between them by setting the mode values as follows:

X> Autoback 0

Manual mode. This mode deactivates the AUTOBACK system completely, so that graphics are drawn directly on
the logical screen, for maximum speed. It is recommended for use with the BOB DRAW and BOB CLEAR
commands.

AUTOBACK 0 is useful when large amounts of graphics are drawn on screens being switched manually with
SCREEN SWAP, because it is much faster than the standard system. But remember that you must take responsibility
for synchronising between the logical and physical screens.

X> Autoback 1

Semi-automatic. In mode 1, AUTOBACK performs all graphical operations on both the logical and physical screens.
Although Bob updates are not taken into account, this is an ideal mode for displaying hi-score tables and control
panels. So as long as your Bobs are kept clear of any new graphics, this mode is perfect.

X> Autoback 2

07.03.06

Updating Objects

Fully-automatic. This setting re-activates the normal AUTOBACK system. Under mode 2, whenever graphics are
drawn on screen, they will be synchronised with any active Bobs automatically. All worries are taken care of by the
system.

Bob drawing modes
Once Bobs have been set up, you are allowed to change the way that they react with other screen graphics.

SET BOB
instruction: set drawing mode for Bobs
Set Bob number,background,planes,mask

SET BOB is used to change the drawing mode used to display a particular Blitter Object. It is best used before
displaying a Bob on the screen. This command has several parameters, of which the first is simply the number of the
Bob to be affected.

The second parameter is a number that sets the mode of the background, in other words, the way that graphics
underneath the Bob are to be re-drawn. There are three alternative background mode settings. A value of zero
automatically replaces the screen background beneath the Bob, after it moves away. This is the standard drawing
system, and gives a smooth animation effect when the Bob is moved across the screen.

If the background is a positive number, then the original background graphics are completely forgotten when the
Bob moves away, and the area beneath the Bob is replaced by a solid block of colour. The colour is calculated with
this formula:

Colour = Background-1

So the following line sets the mode of Bob 1, and draws a block of graphics in colour 9 (calculated as 10-1)
whenever the Bob is moved. Notice how commas must be included if other parameter values are omitted.

X> Set Bob 1,10,,

Since this operation is much faster than the standard system, it is recommended for bursts of extra speed. It can be
used for moving Bobs across areas such as clear blue sky, and is also extremely effective when operated with the
various rainbow effects.

The final alternative background setting is to use a negative value. This turns off the re-drawing process, allowing
you to fill the old background areas with any colours or patterns you like, using the standard AMOS Professional
graphics commands.

After the two parameters that set the Bob number, and the background mode, SET BOB requires a parameter to
establish which of the screen planes is to be used for the Bob. The planes setting is a bit-map, consisting of a binary
number where each digit represents one plane of the screen, and each plane represents one bit of the final colour to
be displayed on screen. The numbering system works like this:

Plane: 543210
Digit: %111111

07.03.07

Updating Objects

By changing these planes, selected colours can be omitted from the Bob when it is drawn on screen. For example:

X Set Bob 1,0,$000111 : Rem Display bits drawn in colours 0 to 7
Set Bob 1,0,$111111 : Rem Display all bit-planes

The last SET BOB parameter is another bit pattern, that selects one of 255 possible Miler modes used to draw Bobs
on screen. This can set a mask, so that colour zero is transparent, and a full description of the available modes is
given at the beginning of Chapter 6.2, in the SCREEN COPY section. In fact, the mask parameter is usually set to
one of two values:

%11100010 if no mask is to be used.
%11001010 if the Bob is to be used with a mask, in other words, if colour zero is to be transparent.

So the following line would set Bob 1 moving across the original screen colours, with a mask set:

E> Set Bob 1,0,%111111, %11001010

Advanced users may find the following information useful:

Blitter Source Purpose

A Blitter Mask

B Blitter Object

C Destination Screen

07.03.08

Detecting Collisions

In this Chapter, you will learn how to turn moving objects into truly interactive game components, by giving them
friendly or hostile personalities. These personalities depend on what happens when two or more objects collide, and
all of the classic computer games demand continual monitoring for collision between moving objects. Collision
detection must be instant, accurate and totally reliable, otherwise games will lack excitement and playability.

AMOS Professional provides a comprehensive range of functions that allow perfect monitoring for collisions
between objects on screen: Bobs, Hardware Sprites, Computed Sprites or any combination of these different types.
The detection routines are sensitive to the actual shape of your objects, so all results are incredibly accurate. There is
not a single "classic" computer game that you cannot match in terms of speed and sensitivity when it comes to
detecting collisions. Here is a synopsis of the options available.

Collision detection options

AMOS Professional permits effortless checking for a collision between any group of screen objects, by means of
four powerful functions. Each function uses the same principle, which takes a single source object and then searches
for collisions between that object and one or more targets. If the test is successful and a collision is detected, a value
of -1 is returned, meaning True. On the other hand, if there is no collision, a value of 0 is given, meaning False.

As a default, the collision functions will test all relevant active objects for collision with the single object that you
are interested in, but if you want to restrict your test to a selection of active objects, each function can be qualified
with an optional setting for the range of targets. This range is set by specifying the number of the first object in the
range to the number of the last target object you are interested in.

Here is a list of the four available collision tests:

BOB COL monitors for collisions between Bobs.

SPRITE COL monitors for collisions between Sprites.
SPRITEBOB COL checks a single Sprite for collisions with Bobs.
BOBSPRITE COL tests a single Bob for collisions with Sprites.

After a collision has been detected by one of those tests, you can make an immediate check for the other objects
involved, using a collision function named COL, which is used like this:

collision=Col(number)
where the number relates to one of the objects being checked.

Most of these options are also available in the built-in AMAL animation system, to which Chapter 7.6 is devoted.

Types of collisions
There are three general categories of collision which can occur in a computer game:

« One-to-one. This is the simplest case where there are only two objects on the screen, such as a bat and a ball.

« One-to-many. Normally the player will have control of one object which is suffering the unwanted attentions
of a whole host of hostile harassers.

« Many-to-many. In more complex arcade games, each hostile object must be checked for collision with an
entire armoury of user-controlled objects.

07.04.01

Detecting Collisions

Before a detailed explanation of the collision functions, it is worth examining AMOS Professional in action with a
ready-made program. This will demonstrate how collisions are handled.

Please load the following tutorial:

DP> Load "AMOSPro Tutorial:Tutorials/Collision Detection.AMOS"

Now run the program and select Example 1. This shows how a simple bat and ball are made to interact, and to
simplify things, the bat has been fixed in position! The collision detection in this example relies on the following
line:

X> If Bob Col(l) Then Boom

Notice how the explosion effect is triggered the instant that the bat overlaps the ball, even by the smallest margin.
Example 2 really sets the ball rolling!

The same instruction can also be used to detect collisions between a single source and any number of target objects,
with the BOB COL function checking all of the Bobs automatically in Example 3.

To refine the system, and check for collisions with a smaller range of objects, simply add the first and last numbers
of that range to the BOBSPRITE COL command, in the demonstration program. For example, changing the relevant
line as follows will test for one red and one green ball only:

E> If Bobsprite 001(1,2 To 4) Then Bell 10

Masks

Invisible "masks" are created around images for two main reasons. Firstly they ensure that the background colour
(zero) is transparent, so a masked Bob will merge with the current screen display. The second reason for masking an
image is to provide AMOS Professional with a mechanism for detecting collisions. The collision detection functions
will only work if a mask has first been created around the required images.

Masks are automatically defined around an image when that image is assigned to a Blitter Object, in other words,
when the BOB command is used. But it is important to remember that Sprites have no masks unless you specifically
attach them. So if you intend to make use of collision detection, it is vital to ensure that all your objects are wearing
their masks.

MAKE MASK

instruction: mask an image for collision detection
Make Mask

Make Mask number

This command creates a mask around every one of the images in the Object Bank, and may take

07.04.02

Detecting Collisions

a little time, depending on the number of objects involved. If an optional number is given, then a mask is created for
that specified image only.

The collision functions

BOB COL

function: detect for collision between Blitter Objects
c=Bob Col(number)

c=Bob Col(number, first To last)

The BOB COL function checks the screen for collisions between Blitter Objects. It is invaluable in the type of
arcade games that rely on hitting or avoiding moving objects. To test for a collision with BOB COL, simply specify
the number of the Bob you are interested in (in brackets) and a value of -1 (true) will be returned if a collision
occurs. Otherwise zero (false) is generated.

Note that the AMOS Professional collision system uses "masks", and so it is sensitive to the physical shape of your
objects. This means that when different objects have extremely varied appearances, the collision will only be
detected when the objects happen to overlap on screen.

Normally, BOB COL will check for collisions between the specified Bob and any other Blitter Object, but you can
also monitor the movements of a particular range of Bobs using this As optional parameters, after the specified Bob
number, you may set the range of Bobs to be checked for collision from the first to the last in your Bob list.

BOB COL is very similar to the BC function used by the AMAL animation system. AMAL is detailed at the end of
this section, in Chapter 7.6. For a rapid status test of an individual Bob, after a collision detection routine, the COL
function can be used to determine precisely which pair of objects have collided amongst a whole range of similar
objects. The COL function is explained later.

SPRITE COL

function: test for collision between Sprites
c=Sprite Col(number)

c=Sprite Col(number,start To finish)

SPRITE COL provides an easy method of checking to see if two or more Sprites have collided on screen. If the test
is successful, SPRITE COL returns a value of -1 (true), and if not 0 (false) is returned instead. As you would expect,
the brackets contain the number of any active Sprite on screen. This can be a standard Amiga hardware Sprite, or an
AMOS Professional computed Sprite, but the image it displays must carry a mask. As a default, masks are created
for Bobs only, so you must deliberately create a mask for each Sprite image at the start of your program, using
MAKE MASK.

If you want to check for a selected group of Sprites, include the optional first to last parameters to set the range of
the Sprite numbers you are interested in.

Note that any mixture of hardware Sprites and computed Sprites can be tested in the same SPRITE COL instruction.
Also that the equivalent AMAL function is SC.

07.04.03

Detecting Collisions

SPRITEBOB COL

function: test for collision between one Sprite and range of Bobs
c=Spritebob Col(number)

c=Spritebob Col(number,start To finish)

As its name suggests, this function checks for a collision between the Sprite whose number you specify, and one or
more Blitter Objects. If the Sprite collides with a Bob, a value of -1 (true) is returned, otherwise 0 (false) is given.

This function will test for collisions with all Bobs on screen, but the checking process can be restricted with the
optional setting of the range of Bobs to be monitored, from the first Bob number to the last in the range. If you need
to test for collisions between several Sprites and Bobs, the command should be enclosed in a loop, like this:

X> For FIRSTSPRITE=1 To LASTSPRITE
If Spritebob Col (FIRSTSPRITE, FIRSTBOB To LASTBOB) Then Boom
Next FIRSTSPRITE

Remember that all specified Sprites must be assigned to a masked image, before collision detection can work. You
are also warned that this function will only work with low resolution screens, and attempts to use it in high
resolution will lead to unpredictable results. This is because your Sprites and Bobs are likely to have different sized
screen points.

BOBSPRITE COL

function: test for collision between one Bob and range of Sprites
c=Bobsprite Col(number)

c=Bobsprite Col(number,first To last)

This function checks for a collision between the single Bob whose number you specify, and all active Sprites on
screen. The result will be -1 (true) is a collision is detected, or 0 (false) if the object remains untouched. To narrow
the range of Sprites to be monitored, simply include the first to the last number in that range. As with SPRITEBOB
COL, this function should only be used in low resolution.

COL
function: test status of an object after collision detection
status=Col(number)

One obvious problem with all of the previous detection functions is that they only report on whether an individual
object has been hit. To discover information about any other objects involved in a collision, the COL function is
used. This means that each object can be tested on its own, to see if it has collided with the source object.

Give the number of the object you wish to test, either a Bob or a Sprite, depending on the circumstances, and its
status will be reported with a value of -1 (true) if it has collided, or O (false) if it remains untouched.

07.04.04

Detecting Collisions

Supposing you are testing Bob 1 for a collision between Bobs 2,3 and 4. The initial test could look like this:
X> C=Bob Col(l,2 To 4)
Alter the collision has been detected, you can check on the other objects using the COL I unction, as follows:

X> For B=2 To 4
If Col(B) Then Print "You have hit Bob number ";B
Next B

A faster version of this function allows instant monitoring for the second object in the collision, like this:
X> object=Col (-1)

This returns the number of the object which has collided with your target, or a zero if no collision has happened. So
the alternative version to the last example is:

X> C=Bob Col (1,2 To 4)
Print "You have hit Bob number ";Col (-1)

The AMAL equivalent of this function is C, and both are perfect for detecting collisions between individual
"hostiles" and "friendlies". You simply check for a collision between each object with a BOB COL or SPRITE
COL, then grab the number of the collision object with the COL function.

SET HARDCOL
instruction: set hardware register for hardware Sprite collision detection
Set Hardcol bitmap1 ,bitmap2

This command is available to experienced Amiga programmers, and it permits Sprite collision detection using the
computer's hardware. SET HARDCOL cannot be used with computed Sprites, so only Sprites zero to 7 may be
monitored for collision.

The CLXCON register is set for hardware Sprite collision detection using two parameters. Bitmap1 is an enabler,
that sets bits 12,13,14 and 15 of the CLXON register, and bitmap2 determines the comparison itself, setting bits zero
to 5. Please refer to your hardware manual for a technical explanation of this register.

HARDCOL
function: return collision status after a Set Hardcol instruction
c=Hardcol

Once the hardware register has been set with a SET HARDCOL command, the HARDCOL function can be used to
read the system register CLXDAT, returning zero (False) if there is no collision, or -1 (True) if a collision is
detected. The COL function can then be used to return the identification number of the colliding Sprite.

07.04.05

Detecting Collisions

Collisions with rectangular blocks

The last part of this Chapter explains how rapid checks can be made to see if an Object has entered a rectangular
area of the screen. These screen "zones" can be used for collision detection in computer games, as well as for setting
up buttons, control panels and dialogue boxes.

RESERVE ZONE

instruction: RESERVE memory for a detection zone
Reserve Zone

Reserve Zone number

The RESERVE ZONE instruction must be used to allocate enough memory for the exact number of zones required,
before a SET ZONE command is given. There is no limit to the number that can be specified, apart from the amount
of available memory.

To erase all current zone definitions and restore the allocated memory to the main program, simply give the
RESERVE ZONE command without any number parameter.

SET ZONE
instruction: set a screen zone for testing
Set Zone number,x1 ,yl To x2,y2

After memory has been allocated with the RESERVE ZONE command, SET ZONE is used to define a rectangular
area of the screen which can be tested by the various ZONE functions. The command is followed by the number of
the new zone, followed by its coordinates from top left to bottom right-hand corner.

ZONE

function: return the zone number under specified screen coordinates
number=Zone(x,y)

number=Zone(screen number,X,y)

The ZONE function is used to give the number of the screen zone at the specified screen coordinates x,y. These
coordinates are normally relative to the current screen, but an optional screen number can be included before the
coordinates.

After the ZONE function has been called, the number of the first zone at these coordinates will be returned, or a
value of zero (False) will be given if no zone is detected.

This function can be used with the X BOB and Y BOB functions to detect whether or not a Bob has entered a
specific screen zone, as follows:

X> N=Zone (X Bob(n),Y Bob(n))

07.04.06

Detecting Collisions

HZONE

function: return the zone number under the specified hardware coordinates
number=Hzone(x,y)

number=Hzone(screen number,Xx,y)

The HZONE function is identical to ZONE, except for the fact that the position on screen is measured in hardware
coordinates. This means that this function can be used to detect the presence of a hardware Sprite in one of the
screen zones, in this format:

X> N=Hzone (X Sprite(n),Y Sprite(n))

MOUSE ZONE

function: test if mouse pointer has entered a zone
number=Mouse Zone

This is a short reminder that the MOUSE ZONE function is used to check whether the mouse pointer has entered a
zone, as outlined in Chapter 5.8.

RESET ZONE

instruction: erase screen zone
Reset Zone

Reset Zone number

This command is used to nullify a zone created by the SET ZONE instruction. On its own, RESET ZONE
permanently de-activates all zone settings, but if it is qualified by a zone number, only that zone will be erased. The
RESET ZONE instruction does not return the memory allocated by RESERVE ZONE to the main program.

07.04.07

IFF Animation

This Chapter explains how AMOS Professional is capable of taking data saved in Interchangeable File Format (IFF),
and transforming it into superb animations. Old hands and less experienced AMOS users alike will discover a new
potential for exploiting programming kills.

IFF graphics have already been discussed as sources for screen pictures and Bob images, and you should be familiar
with the LOAD IFF and SAVE IFF commands in the relevant Screens and Bobs Chapters. Here is a brief reminder:

LOAD IFF

instruction: load an IFF screen from a disc
Load IFF "filename"

Load IFF "filename",any screen number

E> Flash Off
Load Iff"AMOSPro Examples:Logo.Iff"

SAVE IFF

instruction: save an IFF screen

Save Iff "filename"

Save Iff "filename", compression flag

X> Save Iff "My Programs:Iff/Picture Name.Iff" : Rem Compressed
Save Iff "My Programs:Iff/Picture Name.Iff",0 : Rem Uncompressed

Remember that the saved IFF data includes any pre-sets such as SCREEN DISPLAY, SCREEN OFFSET, SCREEN
HIDE and SCREEN SHOW.

Optimising IFF animation

It is perfectly possible to create high definition "true video" animation on your Amiga with AMOS Professional.
Unfortunately, you are normally restricted by available memory. Smooth animations need to display at least 24
"frames" (separate still pictures) every second, and every 16-colour, full-screen picture requires about 32k of storage
space. This means that you would need to invest in a lot of expensive memory storage to run a few seconds of
animation, or the memory of an unexpanded Amiga would be exhausted within two seconds! One solution is to use
tiny images, reduce the number of colours and compact these images using the SPACK command, but the AMOS
Professional programmer deserves better than that.

Adapting the "delta-encoding" technique from the latest video research, AMOS Professional is able to optimise IFF
data, concentrating on those parts of the image that actually appear to "move", and disregarding the much larger area
of the screen that remains more or less the same. So instead of needing to store a long sequence of complete images,
only the differences between one image and the next are recorded. This only requires a fraction of the conventional
storage space and as a bonus it means that data can be unpacked extremely quickly.

07.05.01

IFF Animation

An overview of IFF animation

AMOS Professional IFF animation files are divided into a number of separate components, the "frames" of your
animation sequence. A frame may be either a normal screen or one image in the sequence, but it is important to
understand that the first frame sets up the background reference image for the entire animation, and this first frame is
a standard IFF picture. All of the following frames are then stored using the delta-encoding system, to be saved as a
list of the differences between the new image and the current display.

AMOS Professional offers several alternative methods of exploiting your animations, which may be displayed as an
entire sequential video in a single operation, or played in any combination of frames, providing the sequence runs
forwards. Maximum use is made of the double buffering system, to ensure smooth screen displays, although you are
free to ignore this feature and summon up some flickering screen effects.

IFF animation can be used directly with most other AMOS Professional graphics commands, including SCREEN
COPY and SCROLL, and you can experiment with any area that is not being currently animated. Obviously, if you
try to draw over the area of the animation, the display will become corrupted. It should also be noted that IFF
animation is not compatible with the standard Bob routines. When using Bobs, it is safe to hide the IFF animation on
an invisible background screen and copy the results to the main display. Please see Chapter 7.3 for an explanation of
updating objects. Of course, the easiest solution is to bypass the problem entirely and use sprites instead of Bobs!

It is important to remember that IFF animations can only be played forwards. Never attempt to run your frames in
reverse order. A special function is provided for skipping over any frames you want to miss out.

You should be aware that even with delta-encoding, large, colourful and lengthy animations will still consume huge
amounts of memory, but AMOS Professional can release this memory ready for re-use, as you are about to
discover.

Creating an IFF animation

Many hours can be spent in the creative art of designing home-grown IFF pictures, and adapting them for animation
sequences. On the other hand, you can cheat! If a video digitiser is beyond your budget there are plenty of public
domain images to be found, but the most flexible method is to use commercial packages like Deluxe Paint. III or I'V.
AMOS Professional uses compressed" (Mode 5) animations, which should be selected from the menu of a
commercially available drawing package. Deluxe Paint uses this mode as a default, allowing you to draw your
frames one by one on the screen, and then generate the necessary ANIM files automatically. Deluxe Paint users can
produce animations using the following procedure:

« Draw the background picture for Frame 1 of the animation sequence, which can be as complex as you wish, as
it will only be stored once in the animation file.

« Select [Add Frame] from the [Frames] option on the main [Anim] menu. A new frame will be created,
containing an exact copy of your background picture. There will now be two numbers

07.05.02

IFF Animation

on screen indicating the number of the frame being currently edited, and the total number of frames in your
animation sequence. Because the background picture for your animations is two led as frame number one, the
editing process will start with frame number two.

« Modify your picture using Any of the Deluxe Paint drawing commands, and when you are satisfied simply
move on to the next frame by triggering [Add Frame] again.

« Repeat this process of modifying the last frame and then adding the next frame, for as long as required. You
can check the progress of your animated sequence by going to the Anim/Control] menu and clicking on
[Play]. Press any key to exit from the animation.

 Finally, save your animation sequence onto disc with the [Save] option from the [Anim] menu. This animation
can now be loaded directly into AMOS Professional Basic, and animated with the first command listed below.

Playing an IFF animation

IFF ANIM

instruction: play an animation file

Iff Anim "filename" To screen number

Iff Anim "filename" To screen number, times

This function provides the most straightforward way of displaying a complete IFF animation sequence directly on
screen. The "filename" must refer to a valid IFF animation saved in "compressed" (Mode 5) format. The screen
number defines the screen to be created for the animation sequence. If the requested screen number already exists, it
will be replaced by the new definition automatically. There is an optional parameter to set the number of times the
animated sequence is to be played. If this number is omitted, the animation will be played once.

Remember that frame number 1 is the background screen that serves as the basis for the entire sequence, so that your
animation will always re-start from frame number 2.

After the animation has been played the requested number of times it will stop. The memory consumed will
automatically be released back to AMOS Professional for re-use.

If you have a disc containing an IFF animation file, place it into any drive and call up the standard file selector, like
this:

D> Iff Anim Fsel$("**") To 0,10

When the file is requested, your animation sequence will be loaded into screen 0 and cycled through ten times.

Direct IFF animation
Because the standard AMOS Professional drawing commands may be used with IFF animations, you are provided
with a range of functions for loading and manipulating animated sequences directly in your programs.

07.05.03

IFF Animation

FRAME LOAD

function: load frames into memory

frames=Frame Load(channel To bank/address)

frames=Frame Load(channel To bank/address,number of frames)

Use this function to load one or more IFF frames directly into memory. The parameters in brackets are as follows:
The channel number is the number of an animation file that is currently opened using the OPEN IN command.

Next, specify the memory address or bank number where the frames are to be stored. If an address is specified, the
entire file will be loaded into the chosen memory area, exactly like a BLOAD instruction. If you give a bank
number, a new memory bank will be reserved automatically. It will hold your animation frames and be a permanent
data bank in fast memory, called "IFF". Please note that bank numbers can range from 1 to 65535. To avoid
overrunning your memory area and crashing the system, it is vital that enough space is reserved to hold the entire
animation sequence in memory. The actual storage requirements may be calculated with the FRAME LENGTH
function, which is explained later.

Finally, there is an optional parameter that specifies the number of animation frames to be loaded. If this number is
omitted, only Frame 1 will be loaded, but if your request is greater than the total number of available frames, all of
the images will be grabbed in the current file, if memory allows. This can be exploited to load entire sequences no
matter what their length, by setting this optional parameter to an overlarge number, as no error will be generated.

FRAME LOAD returns the number of frames that have been successfully loaded into memory. This value may be
saved into a variable once the animation has been loaded, and made use of when the sequence is to be played. For
example:

E> Rem Open animation file for reading
Open In 1,"AMOSPro Tutorial:Iff Anim/AMOS.Anim"
Rem Load all frames in current file
Rem use overlarge value of 1000 to grab all available images to bank 10
N=Frame Load (1 To 10,1000)

Close
Rem N now holds the number of actual frames
Print "Number of frames in this file is ";N

FRAME LENGTH

function: return the length of frames in bytes
size=Frame Length(channel)

size=Frame Length(channel,number of frames)

This function is used to calculate the precise amount of memory needed to hold the selected frames of an IFF
animation file. To find the exact size of the required data area with FRAME

07.05.04

IFF Animation

LENGTH, simply give the channel number of the IFF file previously opened with the OPEN IN command.

You may also specify the number of frames to be taken into consideration. If this number is omitted, only the first
frame in the animation with be checked. Alternatively, if an overlarge number is specified, the exact memory
requirements of all the frames in the current file will be returned.

FRAME LENGTH does not change the position of the file pointer, but leaves it at the start of the next animation
frame to be loaded. So it can be used immediately before a FRAME LOAD command to check the memory
requirement of your new animation. For example:

E> Open In 1 ,"AMOSPro Tutorial:Iff Anim/AMOS.Anim"
Rem Load first frame only into memory
L=Frame Length(1l)
Rem Reserve space for the frame in Bank 10
Reserve As Work 10,L
N=Frame Load(l To 10)

Close
Print "Required memory for frame 1=";L
FRAME PLAY

function: play frames on screen
frame=Frame Play(bank/address,number)
frame=Frame Play(bank/address,number,screen)

Use this function to display animations on screen at the appropriate points in your programs. Specify the memory
address or bank number containing an IFF animation sequence that has already been loaded by FRAME LOAD.
Please note that addresses must be even and that the first bytes must be a valid IFF Frame definition. Next specify
the number of frames that you want to play.

The optional screen parameter is the identifier of a new screen to be created for the animation, and it can be used to
automatically define a screen as the first frame of the animation to be displayed. If this screen number is omitted, an
attempt will be made to use the current screen.

Please note that your new screen will not be set up for double buffering, and you should activate this directly from

your program with the DOUBLE BUFFER command, if required. Also, the IFF animation will be displayed on the
logical screen, and when using double buffering SCREEN SWAP must be employed, otherwise the animation will
run invisibly in the background!

Once the FRAME PLAY function has been called, the start address of the next frame in the sequence will be
returned, and this address can be used to display the following frame of the animation.

07.05.05

IFF Animation

For example:

E> Rem Play the first frame in Bank 10 using screen O
F=Frame Play(10,1,0)
Double Buffer : Rem activate non automatic double buffer
Rem Display next frame
F=Frame Play(F,1)

When the end of the animation sequence has been reached, your F variable points to the last frame of the animation.
Because the exact number of frames is returned to the FRAME LOAD function, FRAME PLAY can be enclosed in
a loop for simplicity, like this:

E> Open In 1,"AMOSPro Tutorialiff Anim/AMOS.Anim"
L=Frame Load(l To 10,1000) o
Close
Rem Play first frame from Bank 0 and define new screen O
Do
P=Frame Play(10,1,0)
Double Buffer
For X=2 To L-1 : Rem Play sequence to the end

P=Frame Play(P,1l) : Rem Play next frame
Screen Swap : Rem Make animation visible
Wait Vbl : Wait Vbl : Wait Vbl
Next X
Loop
FRAME SKIP

function: skip past an animation frame
s=Frame Skip(bank/address)
s=Frame Skip(bank/address,number)

This is exactly the same as FRAME PLAY, except that no output is made to the screen. FRAME SKIP omits any
selected frames and returns the address of the next frame to be played in the sequence. The bank or address number
of a valid IFF animation frame is given, followed by the number of frames to be skipped over.

Use FRAME SKIP carefully, because frames are stored relative to the existing screen background. This means that
the animation will only re-commence when an identical frame is reached to the one currently being displayed.

FRAME PARAM
function: return a parameter after playing a frame
p=Frame Param

This function returns the amount of time needed to successfully display an animation on screen, measured in 50ths

of a second. It is used after FRAME PLAY or FRAME SKIP to delay the program until the screen has been totally
re-drawn.

07.05.06

IFF Animation

Deluxe Paint users may need to slow down the speed of AMOS Professional animations by one fiftieth of a second,
in order to harmonise the display, like this:

X> Wait Form Param+l

This has nothing to do with the Deluxe Paint package, but takes into account the extra efficiency of the AMOS
Professional double buffering and copper calculations, when compared to the standard Workbench routines!

Iff Masking

AMOS Professional does not restrict you to loading all of an IFF picture file. It is possible to load specific parts of
the file that hold such items as the palette and the bit-maps only. The PICTURE function is used in conjunction with
the MASK IFF function to achieve this.

PICTURE
function: return mask details of an IFF image
mask=Picture

MASK IFF
instruction: mask IFF picture data
Mask Iff bit-map

The PICTURE function returns the precise format of the mask used by a picture, and it is used like this:

X> Mask Iff Picture
Load Iff "Picture Name"

Here are some typical settings that can be used to load masked data from an IFF file:

X> Mask Iff %100 : Rem Load palette of picture only
Mask Iff %$10000 : Rem Load bitmaps only

Freezing the display

In the next Chapter, the AMOS Professional animation language AMAL is explained. AMAL animations can be
frozen with an AMAL FREEZE instruction, and unfrozen with AMAL ON. The following commands are
equivalents to these two instructions, and also offer STOS compatibility.

FREEZE
instruction: freeze the display
Freeze

UNFREEZE
instruction: unfreeze the display
Unfreeze

Use these commands in your AMOS Professional programs to perform a simple freezing and unfreezing of moving
displays.

07.05.07

AMAL

This Chapter is dedicated to equipping the AMOS Professional programmer with the means to create the smoothest,
fastest and most responsive animations possible. This is achieved by an animation language that is unique to the
AMOS system, and which provides the most complex animation effects in the simplest way.

A detailed tutorial is held in the AMAL folder on your Tutorial disc.

The AMOS Animation Language (AMAL)

To generate professional quality computer simulations and arcade games, dozens of objects may need to be
animated on screen simultaneously, and each object must be moved dozens of times every second. This presents
problems for machine code programmers, and as far as normal Basic languages are concerned, it is asking the
impossible!

AMOS Professional ignores these problems altogether! By making use of its own animation language, and by
creating separate animation programs, very fast, very smooth movements are achieved independently of the main
program. This animation facility is called the AMOS Animation Language, or AMAL for short.

Up to 16 different AMAL programs can be run simultaneously, using interrupts, and each program can be used to
animate anything from Sprites and Bobs, to an entire graphical screen!

Each AMAL program controls the movements of a single Object, which can be moved in an infinite range of pre-
defined patterns, from a simple trajectory curve to an incredibly detailed journey around the screen.

Objects can be controlled directly from the mouse or by joysticks, and any AMAL animation can be called up from
within your main AMOS Professional program. AMAL is so powerful and so versatile that it really is a question of
"seeing is believing", and there are useful ready-made examples waiting to be experienced.

AMAL is called a "language" because it really does have all the facilities of a genuine Basic vocabulary, with the
huge advantage of the fact that all instructions have been optimised for the greatest possible speed. There are
commands for all the features you might expect, such as program control, decision making and loops, but not only
are they executed incredibly fast, AMAL programs are automatically compiled before they are run!

How AMAL is used
AMAL commands consist of the shortest possible keywords, so an AMAL instruction is recognised by only one or
two capital letters. Everything in lower case is ignored.

This means that you can customise your AMAL instructions to make them more individual, or easier to recognise.
For example, to animate an Object, the appropriate AMAL command word consists of a single capital A. You are
allowed to include this in your listings on its own, or as something like this:

X> Anim
Animate
Anything

07.06.01

AMAL

Individual AMAL instructions can be separated from one another by almost any of the unused characters, including

spaces. But colons cannot be used for this purpose. You are recommended to use the semi-colon character ";
instead, like this:

X> "Move ; Pause ; Jump"

There is a choice between two ways of creating AMAL programs. One way is to define you animations from inside
AMOS Professional Basic using strings, for which a special AMAL command is provided. The alternative method is
to produce animation sequences with the AMAL accessory program, and save them into a memory bank.

The next part of this Chapter is a step-by-step guide through the basic principles of AMAL, and is intended as an
introductory tutorial. This is followed by a full list of all the AMAL commands, along with detailed explanations of
their use. Then advanced techniques will be dealt with. At the end of the Chapter, problems with AMAL errors are
solved, followed by a final section that provides full compatibility for STOS programmers.

The AMAL guided tour
In this section, Sprites will be used to demonstrate the wonders of AMAL. All of these techniques work equally
well with Bobs, so you can take full advantage of both types of Object in your AMAL programs.

Moving an Object

MOVE
AMAL instruction: move an Object
Move horizontal number,vertical number,step

The M command moves an Object by a specified number of units horizontally and vertically, in exactly the number
of steps you select. Positive values will move the Object to the right and downwards, while negative values control
movement to the left of the screen and upwards. Remember, as with most AMAL commands, this instruction is
recognised by a single capital letter, so if it is entered as "Move" or a similar single word beginning with the letter
M, all of the lower case letters will be completely ignored. To demonstrate Move, first place a Sprite on screen at
coordinates 100,100 with this:

E> Load "AMOSPro Tutorial:Objects/Sprites.abk" : Get Sprite Palette
Sprite 8,200,100,1

The range, direction and speed of how the Sprite will move now depends on the three chosen values given after the
Move command. The size of the steps will particularly affect the Sprite's movement, with a large number of steps for
a large distance resulting in very slow, very smooth movements, and very few steps giving jerky movements. Add
the following lines to the last example:

E> Amal 8, "M 100,100,50" : Amal On 8 : Wait Key : Rem Slow diagonal movement

07.06.02

AMAL

The parameters in a Move command are not limited to numbers. You can also employ expressions using AMAL
functions. In the following example, use is made of XM and YM, which are the pair of AMAL functions that return
the current coordinates of the mouse. This sort of technique is often used to make an Object appear to chase after a
player in "intelligent" pursuit:

E> Load "AMOSPro Tutorial:Objects/Sprites.abk" : Get Sprite Palette
Sprite 8,200,100,1
Amal 8, '"Move XM-X,YM-Y,32"
Amal On 8 : Wait Key

Animating an Object

ANIM
AMAL instruction: animate an Object
Anim number,(image,delay)(image,delay) ..

Once Objects are moving smoothly across the screen, the next stage is to animate them. This is achieved by cycling
an Object through a series of images, using the Anim command. Anim is followed by a number, which specifies
how many times the animation cycle is to be repeated. If this number is given a value of zero, the animation will be
performed continuously. The "frames" of the animation are each held in a pair of brackets containing two
parameters. First, the number of the image is given, then the delay time that this image is to be displayed on screen,
measured in 50ths of a second. Remember that you are recommended to use semi-colons to separate AMAL
commands, as shown in the following example:

E> Load "AMOSPro Tutorial:Objects/Sprites.Abk"
Get Sprite Palette
SP=6 : Sprite SP,200,100,7
M$=Anim 26, (7,4) (8,5):"
M$=M$+"Move 100,100,150; Move-100,-100,75"
Channel SP To Sprite SP
Amal SP,MS$: Amal On SP
Direct

For an instant demonstration of an animated Object, please examine this tutorial program:
LD> Load "AMOSPro Tutorial:Tutorials/AMAL/AMAL 1.AMOS"

Moving within AMAL programs

JUMP
AMAL instruction: move to a label in AMAL program
Jump label

As you begin to use the facilities of AMAL with confidence, you will soon need to be able to jump from one part of
a program to another. This is achieved by defining a label, and then using the Jump command to move to that label.

07.06.03

AMAL

All AMAL labels are defined using a single capital letter, followed by a colon. In the same way that commands are
recognised, any lower-case letters that you may want to use to improve the understanding of your listings will be
ignored. So the following labels are all acceptable:

T .

Térget:
Zippadeedoodah:

Remember that each label is defined by one upper-case letter only, so in those examples, both T: and Target: refer
to the same label! If you forget this, and try to define two different labels starting with the same letter, an error
message will be generated.

Each AMAL program can have its own unique set of labels, so it is perfectly acceptable to use identical labels in
several different programs.

AMAL registers

LET
AMAL instruction: assign a value to a register
Let register=expression

The Let instruction is used to assign a value to an AMAL register, and it is very similar to conventional Basic except
for the fact that all expressions are evaluated strictly from left to right.

The registers are used to hold values in AMAL programs, and allowable numbers range from -32768 up to 32767.
There are three types of AMAL register, as follows.

Internal registers R0 to R9

Every AMAL program has its own set of ten internal registers. Their names start with the identification letter R,
followed by one of the digits from 0 to 9 and internal registers are like the local variables defined inside a normal
AMOS Professional procedure.

External registers RA to RI

External AMAL registers keep hold of their values between separate AMAL programs. This allows them to be used
to pass information between several AMAL routines. There are 26 external registers provided, each having the
identification letter R followed by one of the 26 letters of the alphabet from A to Z.

The contents of any internal or external register can be accessed directly from your main AMOS Professional
program, using the AMREG function, which is explained later.

Special registers X,Y and A

There is a set of three values which control the status of an Object, and these are held in three special registers. X
and Y contain the coordinates of the Object, and A stores the number of the image which is displayed by a Sprite or
a Bob.

07.06.04

AMAL

By changing the values in these registers, the Object can be moved around the screen and animated. Here is an
instant example:

LD> Load "AMOSPro Tutorial:Tutorials/AMAL/AMAL 2.AMOS"

Logical decisions
You can trigger a Jump to a label as the result of a simple test performed in an AMAL program.

IF
AMAL structure: perform a test
If test Jump label

If the expression in a test is -1 (True), the AMAL program will jump to the specified label, otherwise a value of zero
(False) will result in the execution of the AMAL instruction immediately after the test.

Unlike a standard AMOS Professional structure, you are limited to a single jump after the test.

It is common to pad out this sort of instruction with some lower-case words, which make the program appear more
familiar, but will be ignored by AMAL. If you do add spurious words like "then" or "else" you must remember not
to use capital letters. For example:

X> If X>10 then Jump Label else Let X=Y"

Tests can be any logical expression, and may include the following characters:

equal
greater than
less than

> not equal

ANV I

Note that AMAL expressions can include all of the normal arithmetic operations, except MOD. So a logical AND
(&) and a logical OR (]) may be used in AMAL expressions.

Do not try to combine several tests into a single AMAL expression using the ampersand (&) or upright (|)
characters.

FOR

TO

NEXT

AMAL structure: loop within AMAL program
For register=start To end ... Next register

This structure is almost identical to Basic's FOR ... NEXT loops. The specified register can be any of the internal
registers from RO to R9, or any external register from RA to RZ. Special registers cannot be used. Loops may be
nested as usual, but the step size of a loop can only be set to 1.

07.06.05

AMAL

Please note that AMAL automatically waits for the next vertical blank before jumping back to the start of the loop
with Next. The movement of your objects will only be seen when the screen is updated after a VBL, so faster loops
would merely waste valuable processor time without any visible effect. AMAL automatically synchronises your For
... Next loops with the screen updates, producing the smoothest possible results. The use of a Pause command is not
needed.

AUTOTEST
AUtotest (list of tests)

The AUtotest feature provides rapid interaction between AMAL and the user. It adds a special test at the beginning
of the AMAL program, and this test is performed at every VBL before the rest of the AMAL program is executed.
AUtotest is fully explained in its own section of this Chapter.

DIRECT
Direct

This sets the part of the main program which is to be executed after an Autotest.

END
End

The End command terminates the entire AMAL program and turns off the Autotest feature if it has been defined.

EXIT
eXit

This command exits from an Autotest and re-enters the current AMAL program.

ON
On

The On instruction activates the main program after a Wait command.

PAUSE
Pause

Use Pause to temporarily halt the execution of an AMAL program, and wait for the next vertical blank period. After
the VBL, the program resumes from the next instruction automatically.

You are recommended to use Pause before a Jump command to ensure that the number of jumps is less than the

maximum of ten per VBL. This frees valuable processor time and can have a superb effect on the overall speed of
your Basic program.

07.06.06

AMAL

WAIT
Wait

The Wait command freezes your AMAL program and executes an Autotest only.

Generating movement patterns

Elaborate movement patterns can be recorded directly into the AMAL memory bank, using the AMAL Editor. This
superb accessory is fully detailed in Chapter 13.5. To create less ambitious movement patterns, AMAL loops can be
used to great effect.

The simplest form of motion is a straight line, which is generated by a single For ... Next loop, like this:

E> Load "AMOSPro Tutorial:Objects/Sprites.abk" : Get Sprite Palette
SpP=4 : Sprite SP, 128,100,7
C$="For RO=1 To 300; Let X=X+1 ; Next RO" Rem Move from left to right
Amal SP,C$: Amal On SP
Direct

More complex movements can be created by including extra loops, as follows:

E> Load "AMOSPro Tutorial:Objects/Sprites.abk" : Get Sprite Palette
SP=6 : Sprite SP,128,60,7
C$="For R1=0 To 10 ;"

C$=CS$+"For RO=1 To 40; Let X=X+8 ; Next RO ;" : Rem Move right
C$=CS$+"Let Y=Y+8 ;" : Rem Move down
C$=CS$+"For R0O=1 To 40 ; Let X=X-8 ; Next RO ;" : Rem Move left

C$=CS$+"Let Y=Y+8 ; Next R1": Rem Move down
Amal SP,C$: Amal On SP
Direct

Playing a complex movement path

Migrating birds, car-assembly robots, sheep dogs and hostile aliens have one thing in common, they all seem to
move in intelligent patterns. If you have ever envied the animated sequences featured in the latest video arcade
game, your envy is at an end. AMAL allows you complete freedom to animate Objects through any sequence of
movements imaginable.

PLAY
AMAL instruction: create a movement path

PL
ay path

The PLay command is used to play a movement pattern already defined and stored in the AMAL memory bank.
These patterns are created from the AMAL Editor accessory, which records a sequence of mouse movements and
enters them directly into the AMAL memory bank. Once patterns have been defined in this way, they can be
assigned to any Object on the screen, and that Object will reproduce your original patterns perfectly. the AMAL
Editor is fully explained in Chapter 13.5.

07.06.07

AMAL

The PLay command is followed by the number of the pre-recorded path stored in the AMAL memory bank, and
path numbers can range from 1 up to the maximum number of patterns tho have been stored. The first time that
AMAL comes across a PLay command, it will look for Ow relevant path number in this memory bank, and if any
problem is encountered, AMAL will abort the operation and skip to the instruction immediately after the animation
string.

As soon as the pattern has been initialised, register RU is loaded with the delay time between each individual
movement step, measured in 50ths of a second. By changing the RU register from inside the AMAL program,
Object movements are slowed down or speeded up. Note that each movement step is added to the current
coordinates of the Object. This means that if the Object movements are controlled by SPRITE or BOB instructions,
that Object will continue its pre-recorded movements from the new screen location. Furthermore, it is easy to
animate dozens of different Objects using a single sequence of pre-recorded movements.

The value which controls the direction of movement is held in register R1. This value can affect movement in one of
three different ways, as follows.

R1 Value Effect

>0 execute sequence in pre-recorded order
0 execute sequence in reverse order
-1 stop sequence and proceed to next AMAL instruction

The contents of both register R1 and RU can be changed at any time from within the AMOS Professional Basic
program, by using the AMREG or AMPLAY commands, which are explained later.

For a spectacular demonstration of pre-recorded movement patterns, please load this ready- made program:

LD> Load "AMOSPro Tutorial:Tutorials/AMAL/AMAL 5.AMOS"

AMAL functions list
Here is a full alphabetical list of all the available AMAL functions:

BC
value=Bob Col(number,first,last)

BC is identical to the BOB COL Basic instruction. It checks the single Bob whose number is specified for collisions
with other Bobs, whose numbers are given as the first and last in the range to be monitored. If a collision is
detected, a value of -1 (true) is returned, otherwise O (false) is given.

This instruction may not be performed within an interrupt, so it is only available when AMAL routines are directly
executed from Basic using the SYNCHRO command.

07.06.08

AMAL

C
value=Col(number)

This function returns the status of the object whose number is specified, after a BC or SC function. If the object has
collided with another object, a value of -1 (true) is returned, otherwise 0 (false) is given.

JO
bit-map=J0

The JO function tests the status of the right joystick, and returns a bit-map containing its report. Please see JOY for a
full explanation.

J1
bit-map=J1

The J1 function tests the left joystick and returns a bit-map containing its current status. Please see JOY for a full
explanation.

K1
value=K1

The K1 function checks if the left mouse key has been pressed, and returns a value of -1 (true) or 0 (false).

K2
value=K2

The K2 function checks the right mouse key. If it has been pressed a value of -1 (true) is returned, otherwise 0
(false) is given.

Sc
value=Sprite Col(number,first,last)

SC is identical to the SPRITE COL Basic instruction. It checks the single Sprite whose number is specified for
collisions with other Sprites, whose numbers are given as the first and last in the range to be monitored. If a
collision is detected, a value of -1 (true) is returned, otherwise 0 (false) is given.

This instruction may not be performed within an interrupt, so it is only available when AMAL routines are directly
executed from Basic using the SYNCHRO command.

VU
intensity=VU(voice)

The VU function samples one of the sound channels and returns the intensity of the current voice. This information
can then be used to animate objects in synchronisation to sound.

07.06.09

AMAL

Give the voice number to be checked, from 0 to 3, and the intensity is returned in the form of number from 0
(silence) to 63 (maximum). Please see VUMETER in Chapter 8.1 for a working example.

XH
hardx-coordinate=XHard(screen ,x-coordinate)

The XH function converts a screen x-coordinate into its equivalent hardware coordinate, relative to the specified
screen number.

XM
x-coordinate=XMouse

XM is identical to the X MOUSE function in Basic, and returns the x-coordinate of the mouse cursor in hardware
coordinates.

XS
hardx-coordinate=XS(screen,x-coordinate)

This converts a hardware coordinate to a screen coordinate, relative to the specified screen number.

YH
hardy-coordinate=YHard(screen,y-coordinate)

The YH function converts a screen y-coordinate into its equivalent hardware coordinate, relative to the specified
screen number)

YM
y-coordinate=YMouse

YM is identical to the Y MOUSE function in Basic, and returns the y-coordinate of the mouse cursor in hardware
coordinates.

YS
hardy-coordinate=YS(screen,y-coordinate)

This converts a hardware coordinate to a screen coordinate, relative to the specified screen number.

Z
random=Z,(bit-mask)

The Z function returns a random number from -32767 to 32768.

This number may be limited to a specific range using an optional bit-mask.

07.06.10

AMAL

A logical AND operation is performed between this bit-mask and the random number to generate the final result, so
setting the bit-mask to a value of 255 would return numbers in the range 0 to 255.

To optimise speed, the number returned is not truly random, and if true random numbers are needed, they may be
generated by the Basic instruction RND and then loaded into an external AMAL register using AMREG.

There is a tutorial available on the AMAL functions in the following file:

LD> Load "AMOSPro Tutorial:Tutorials/AMAL/AMAL 3.AMOS"
Calling an AMAL program from AMOS Professional

AMAL

instruction: call an AMAL program

Amal channel number,"instruction string"

Amal channel number,program number

Amal channel number,memory bank address

Amal channel number,"instruction string" To address

The AMAL command is used to assign an AMAL program to an animation channel. This program can be taken
from an instruction string, or it may be taken directly from the AMAL memory bank. In either case, the AMAL
instruction is followed by the channel number to be assigned, ranging from 0 to 63.

Each channel can be independently assigned to a Sprite, or a Bob, or a screen.

Only the first 16 AMAL programs, assigned to channels 0 to 15, can be performed using interrupts. Channels 16 to
63 must be executed directly from Basic using the SYNCHRO command, which is explained elsewhere in this
Chapter.

There is also a version of the AMAL command provided for advanced users. In this version, the contents of
registers X,Y and A are copied into a specific area of memory. This information can then be used in AMOS
Professional Basic routines, which means that AMAL can be exploited to animate anything from an individual
character, to a graphical block. The format used by this technique is as follows:

X> Amal channel number,AS$ To address

The address must be even, and point to a safe memory location, preferably in an AMOS Professional string, or
memory bank. The AMAL program is executed every 50th of a second, and the following values will be written into
the specified memory area:

Location Effect
Address Bit 0 This is set to 1 if X register has changed
Bit 1 This indicates that Y register has changed
Bit 2 This is set if image (A) has changed since last interrupt
Address+2 This is a word containing the latest value of X
Address+4 Holds the current value of Y
Address+6 Stores the value of A

07.06.11

AMAL

Note that these values can be accessed from your program using the DEEK function. Note also that this AMAL
option overrides any previous CHANNEL assignments.

Controlling update timings

Although most AMAL programs are performed incredibly quickly, all Objects that are manipulated must be drawn
on screen individually, and updated at regular intervals. Tim amount of time needed for this updating procedure can
vary during the course of a program, and so it is unpredictable. This can generate jerky movement patterns for
certain Objects. Fortunately, This problem can be solved very easily.

UPDATE EVERY
instruction: control update intervals
Update Every number

The UPDATE EVERY command slows down the updating process, so that even the largest Object can be re-drawn
during a single screen update. The animation system is regulated by this process, once again providing smooth
movement. After the UPDATE EVERY command, simply specify the number of vertical blank periods between
each screen update, in 50ths of a second. Begin your timing changes with a value of two, and increase the value by
one unit at a time until the animation becomes smooth.

One useful effect of using UPDATE EVERY is to reserve more time for AMOS Professional to execute the main
program. In fact, with careful use of this instruction, it is possible to speed up programs by as much as one third,
and still maintain excellent animation.

Assigning Objects to Channels

Up to 64 different AMAL programs can be executed simultaneously, and each program must be assigned to a
specific animation "channel". The first 16 channels can be performed using interrupts, but if more than 16 animations
are needed, interrupts must be turned off using the SYNCHRO OFF command, which is explained below. As a
default, the 16 interrupt channels are assigned to the relevant Sprite numbers.

CHANNEL

instruction: assign an Object to an AMAL channel
Channel number To Sprite number

Channel number To Bob number

The CHANNEL command assigns an animation channel to a particular screen-related Object. There is no restriction
to a single channel, and any single Object can be animated with several channels, if necessary.

Animating Sprites

As a default, channels 0 to 7 are allocated to the equivalent hardware Sprite number, and channels 8 to 15 are
reserved for the equivalent computed Sprite numbers.

07.06.12

AMAL

To animate computed Sprite numbers 16 to 63, they must be directly allocated to an animation channel with the
CHANNEL command, like this:

X> Load "AMOSPro Tutorial:Tutorials/AMAL/Channel 20 To Sprite 18"

The X,Y registers in your AMAL program now refer to the hardware coordinates of the selected Sprite, and the
current image of that Sprite is held in register A.

Animating Bobs

A Bob is assigned to an animation channel in the same way, and will be treated in an identical manner to the
equivalent hardware Sprite. The only difference will be that registers X and Y will hold the current Bob position in
screen coordinates.

Please loads the following program for a demonstration of assigning channels:

LD> Load "AMOSPro Tutorial:Tutorials/AMAL/AMAL 4.AMOS"

Animating more than 16 Objects

As has been explained, up to 16 different AMAL programs can normally be executed at one time. This limitation is
imposed by the Amiga's interrupt capabilities being unable to cope with more. Fortunately, the AMOS Professional
programmer is provided with the means to beat this limitation, by executing AMAL programs directly, and
bypassing the interrupt system altogether.

SYNCHRO

SYNCHRO ON

SYNCHRO OFF

instructions: execute AMAL programs directly
Synchro

Synchro On

Synchro Off

All AMAL programs can be run by a single call to the SYNCHRO command. Prior to calling SYNCHRO, the
interrupts must be turned off with a SYNCHRO OFF instruction. It is important that this is done before defining
your AMAL programs, otherwise you will still be restricted to using channels 0 to 15.

Because AMAL programs are so much faster than their Basic equivalents, animations will be incredibly smooth,
even when the limit of 16 Objects is broken. For a ready-made example please load the following program:

LD> Load "AMOSPro Tutorial:Tutorials/AMAL/AMAL 6.AMOS"

Manipulating screens
The CHANNEL command is not restricted to assigning Objects. It can also be used to affect entire screens in four
different ways: positioning screens, scrolling screens, changing the screen size and generating rainbow effects.

07.06.13

AMAL

CHANNEL

instruction: manipulate a screen

Channel channel number To Screen Display screen number
Channel channel number To Screen Offset screen number
Channel channel number To Screen Size screen number
Channel channel number To Rainbow rainbow number

Moving a screen

Normally, the SCREEN DISPLAY command is used to position the current screen on a television display. However,
you may need to achieve the same effect using interrupts, and the CHANNEL instruction may be used for this
purpose. Simply specify which channel number is to be set to which screen number, and the X and Y variables in
AMAL will hold the position of the screen in hardware coordinates. Note that register A is not used by this
technique, and screens may not be animated using the ANIM command, although all other AMAL instructions can
be performed as normal.

In fact the screen number can be defined anywhere in your program, and this system will work perfectly provided
that the screen is opened before the animation is started. Here is a simple example:

E> Flash Off : Load Iff "AMOSPro Examples:Iff/Logo.Iff"
Channel 0 To Screen Display 0
Amal 0,"Loop: Move 0,200,100; Move 0,-200,100; Jump Loop"
Amal On: Direct

Hardware scrolling

Using hardware scrolling to manipulate screens can be achieved by the SCREEN OFFSET instruction, but it is often
much easier to animate screens using the smooth techniques of AMAL. Specify which channel number is to
assigned to which screen number, using the CHANNEL command in conjunction with the SCREEN OFFSET
command. AMAL's X and Y registers will now refer to the section of the screen which is to be displayed on your
television display. By changing these registers, the visible screen area can be scrolled around the display. Try
moving the mouse in Direct Mode, to affect this example:

E> Screen Open 0,320,500,32,Lowres : Rem Open tall screen
Screen Display 045,320,250
Flash Off : Cls O
Load Iff "AMOSPro Examples:Iff/Logo.Iff"
Screen Copy 0,0,0,320,250 To 0,0,251
Screen 0: Get Palette (0)
Channel 0 To Screen Offset 0
Amal 0,"Loop: Let X=XM-128 ; Let Y=YM-45 ; Pause; Jump Loop"
Amal On : Wait Key

Changing the screen size

Similarly to moving and scrolling a screen with the CHANNEL command, the size of a screen

07.06.14

AMAL

can be changed when CHANNEL is used in conjunction with SCREEN SIZE. When the channel number is assigned
TO a screen number in this way, registers A and Y will control the width and height of the screen. Here is an
example:

E> Load Iff "AMOSPro Examples:Iff/Logo.Iff",0
Channel 0 To Screen Size 0
Screen Display 0,320,1 : Rem Set screen size to 1
AS="Loop: For R0=0 To 255; Let Y=R0O; Next RO;"
AS=AS+"For RO=0 To 254; Let Y=255-R0O; Next RO ; J Loop"
Amal 0,AS$: Amal On: Direct

Creating rainbow effects

The final use of CHANNEL is with the RAINBOW command. As usual, a channel number between 0 and 63 is
assigned to a rainbow number. Please remember that rainbow numbers range from 0 to 3. The X register will now
hold the first colour of the rainbow palette which is to be displayed, and by changing the value in this register the
rainbow will appear to cycle. The Y register will contain the line on screen where the rainbow effect begins. By
changing this value, the rainbow effect can be moved up and down. All positions are measured in hardware
coordinates. Finally, register A stores the height of the rainbow on screen. Remind yourself of the scrolling rainbow
effect in this instant example:

LD> Load "AMOSPro Tutorial:Tutorials/AMAL/AMAL 4.AMOS"

The Autotest system

Normally, all AMAL programs are performed in sequence, from start to finish. There are certain routines that will
take a few seconds to complete, such as a For ... Next loop or a Move. In most cases this does not cause any
problem, but sometimes delays can be caused. The Autotest feature is provided to solve such problems, and it is
used to change the sequence of instructions.

The following example demonstrates just such a problem, which could benefit from an Autotest. In this example,
the Sprite is supposed to follow the movements of the mouse. However, because the new XM and YM movements
are entered after the Sprite movement has completely finished, the routine is unacceptably slow. Try moving the
mouse in a circle, to exaggerate the problem:

E> Load "AMOSPro Tutorial:Objects/Sprites.abk" : Get Sprite Palette
Sprite 8,130,50,1
Amal 8,"Loop: Let RO=XM-X ; Let R1=YM-Y ; Move RO,R1,50 ; Jump Loop"
Amal On: Direct

After an explanation of the Autotest commands, and an explanation of how to use them, you will be able to rewrite
that example and solve the problem.

AUTOTEST
AMAL Autotest system
AUtotest (list of test commands)

The feature is activated by a call to AUtotest, followed by a pair of brackets containing the series of the tests you
want to use.

07.06.15

AMAL

These tests consist of any of the following commands:

Let
L register=expression

This is the standard AMAL Let instruction, and it assigns the result of an expression to a register. For example:
X> Let RO=XM

JUMP
J label

Use Jump to go to a label positioned at another part of the current Autotest. The label is defined using a colon, and it
must lie inside the Autotest brackets, like this:

X> (... J Targetlabel Targetlabel: ...)

EXIT
eXit

This leaves the Autotest and re-enters the main program once again, at the original departure point.

WAIT
Wait

This turns off the main AMAL program completely, and only allows the Autotest to be executed.

ON
On

The On instruction re-starts the main program again after a previous Wait command. This allows you to wait for a
specific event, such as a mouse click, without wasting valuable processor time.

DIRECT
Direct label

The Direct command changes the point at which the main program will be resumed, after an Autotest. AMAL will
now jump to this point at the next vertical blank period. Note that the label must be defined outside of the Autotest
brackets. For example:

X> (... Direct M)
... M:

07.06.16

AMAL

IF

If expression Jump label
If expression Direct label
If expression eXit

This is a specially extended version of the standard If statement used in AMAL, and it is used to simplify the testing
process inside an Autotest routine. It depends on the result of a logical expression, and triggers one ,of three actions.
The three alternatives are a Jump to another part of the Autotest, or a Direct change of the resumption point of a
program, or an eXit from the Autotest.

Here is the example at the start of this section, re-written with the Autotest system in place:

E> Load "AMOSPro Tutorial:Objects/Sprites.abk" : Get Sprite Palette
Sprite 8,130,50,1
AS="AUtotest (If R1<>XM Jump Update"
AS=AS+"If RI<>YM Jump Update else eXit"
AS$=AS$+"Update: Let RO=XM; Let R1=YM; Direct M)" : Rem End of Autotest
AS=AS$+"M: Move RO-X,R1-Y,20; Wait;" : Rem Try Changing 20 to other wvalues
Amal 8,AS$: Amal On : Direct

If all is well, the Sprite should now be following your mouse, no matter how fast it is moved. To analyse the last
example, identify how the mouse coordinates are tested every 50th of a second, using the XM and YM functions. If
they remain unchanged since the last test, the Autotest is short-circuited by the eXit command, and the main
program resumes exactly where it left off. But if the mouse has been moved, the Autotest re-starts the main program
from label M, at the beginning, using the new coordinates in XM and YM.

For a tutorial session involving the Autotest feature, as well as a fully playable arcade game, please load the
following program and remember to watch the birdie!

LD> Load "AMOSPro Tutorial:Tutorials/AMAL/AMAL 7.AMOS"

AMAL program control from AMOS Professional Once an AMAL program has been defined, you will need to be
able to execute and control it from inside an ordinary AMOS Professional program. Here are the commands
provided for this purpose.

AMAL ON

AMAL OFF

instructions: start and stop AMAL programs
Amal On

Amal On number

Amal Off

Amal Off number

AMAL ON is used to activate all AMAL programs.

07.06.17

AMAL

If an optional number is given, then only that AMAL routine will be activated. Similarly, AMAL OFF stops all
AMAL programs from executing, by erasing them from memory. They can only be re-activated by using the AMAL
command again. By specifying an individual AMAL program number, only that program is stopped.

AMAL FREEZE

instruction: suspend AMAL programs
Amal Freeze

Amal Freeze number

Use this command to temporarily freeze one or all AMAL programs from running. These programs may be started
again at any time with an AMAL ON command. Please note that AMAL FREEZE should be used to suspend
AMAL before a command such as DIR is executed, otherwise timing problems may happen.

AMREG

reserved variable: give value of AMAL register
register=Amreg(number)
register=Amreg(channel,number)
Amreg(number)=expression
Amreg(channel,number)=expression

The AMREG function allows you to gain access to the contents of internal and external AMAL registers, from
inside your AMOS Professional program. An AMAL register number must be specified, ranging from 0 to 25, with
zero representing external register RA, up to 25 representing register RZ. An optional channel parameter can be
given, where a specified number from 0 to 9 is used to represent the AMAL internal registers from RU to RO.

The following example demonstrates how the position of an AMAL Sprite can be returned:

E> Load "AMOSPro Tutorial:Objects/Sprites.abk" : Get Sprite Palette
Channel 1 To Sprite 8 : Sprite 8,100,100,1
AS="Loop : Let RX=X+1 Let X=RX ; Pause ; Jump Loop"
Amal 1,A$: Amal On : Curs Off

Do
Locate 0,0
Z=Asc ("X") -65
Print Amreg(Asc("X")-65) : Rem Use Asc to get register number
Loop
AMPLAY

instruction: control animation produced by PLay
Amplay speed, direction
Amplay speed,direction start To end

Movement sequences that have been produced using the PLay command are controlled

07.06.18

AMAL

through the internal registers RO and R1. Every animated Object is assigned its own unique set of AMAL registers,
but if several Objects are being animated together, several registers may need to be set with exactly the same values.
Although this can be achieved by the AMREG function, it is simpler to use a single instruction for changing these
registers, affecting a whole batch of Objects simultaneously.

When speed and direction parameters are given after an AMPLAY command, they are loaded in to registers RO and
R1 in the selected channels. The controlling speed of the Object is set by a delay time, given in 50ths of a second,
between each movement of the Object. The direction parameter changes the direction of the movement, and is set by
one of the following values:

Value Direction of Motion

>0 Move the selected Object in the original movement direction
0 Reverse the motion and move the Object backwards
-1 Abort movement and jump to next AMAL instruction

Note that either the speed or direction parameters can be omitted, as required.

The AMPLAY command normally affects all current animation channels, but optional start and end points may also
be given to set the channel numbers of the first and last Objects to be affected. Here are some examples:

X> Amplay ,0: Rem Reverse objects

Amplay 2, : Rem Slow down movement pattern

Amplay 3,1 : Rem Set speed to 3 and direction to 1

Amplay ,-1 3 To 6: Rem Stop movement on channels 3,4,5 and 6
CHANAN

function: test a channel for an active animation
value=Chanan(channel number)

This simple function is used to check if the specified animation channel is currently engaged. A value of -1 (true) is
returned if the animation is active, otherwise a zero (false) is given if the animation is complete. Here is an example:

E> Load "AMOSPro Tutorial:Objects/Sprites.abk" : Get Sprite Palette
Sprite 9,150,150,1
MS="Anim 12, (1,4) (2,4)"
Amal 9,M$: Amal On : Wait Vbl
While Chanan (9)
Wend
Print "Animation complete!"

CHANMV
function: test channel for an active Object
value=Chanmv(channel number)

The CHANMYV function is used to check if the Object assigned to the specified channel is currently moving.

07.06.19

AMAL

A value of -1 (true).is given if the Object is in motion, otherwise zero (false) is returned. When used with the Move
instruction in AMAL, the CHANMYV function can check whether a movement sequence has exhausted its steps. The
sequence can then be started again at the new position, with an appropriate movement string. For example:

E> Load "AMOSPro Tutorial:Objects/Sprites.abk" : Get Sprite Palette
Sprite 9,90,30,1
M$="Move 300,150,150; Move -300,-150,75"
Amal 9,M$: Amal On
While Chanmv (9)
Wend
Print "Movement complete!"

AMAL errors

AMALERR
function: give position of an AMAL error
position=Amalerr

The AMALERR function returns the position in the current animation string where an error has been found. It has
been provided to allow the AMOS Professional programmer to locate and correct AMAL mistakes as quickly as
possible. Type the following example exactly as it appears:

E> Load "AMOSPro Tutorial:Objects/Sprites.Abk" : Get Sprite Palette
Sprite 8,100,100,1
AS="L: IF X=300 Jump L; Pause; Let X=X+1; Jump L"
Amal 8,AS$: Amal On : Direct

That example will generate an error, because IF will not be interpreted as an "If" structure, but as the two AMAL
instructions I and F. To find the position in the animation string of this error, type the following line from Direct
Mode:

D> Print Mid$ (AS$,Amalerr,Amalerr+5)

AMAL error messages

As soon as a mistake is encountered in an AMAL program, AMOS Professional will exit back to Basic with an
appropriate error message. Here is a list of the errors that can be generated by this system, and an explanation of
their most likely causes.

Bank not reserved

You have tried to call the PLay instruction but have forgotten to load a bank containing the movement data into
memory. This should be created with the AMAL accessory program. If the PLay command is not in use, then check
that any Pause and Let commands are separated in your listing.

07.06.20

AMAL

Instruction only valid in autotest
The Direct or the eXit instructions have been called from the main AMAL program, by mistake.

Illegal instruction in Autotest

Autotest can only be used together with a limited range of AMAL commands. Objects cannot be moved or animated
in any way from inside an Autotest, so check for misuse of instructions such as Move, Anim or For ... Next
structures.

Jump To/Within Autotest in animation string

The commands inside an Autotest are completely separate from the main AMAL program, and direct jumps are not
allowed inside an Autotest procedure. To leave an Autotest and return to the main AMAL program, either Direct or
eXit must be used.

Label already defined in animation string

You are trying to define the same label twice in an AMAL program. All AMAL labels consist of a single capital
letter (For example, "Test" and "Total" are seen as two versions of the same label "T". This error can also be
generated if two instructions have been separated by a colon. Semi- colons should be used for this purpose.

Label not defined in animation string
You are trying to jump to a label that does not currently exist in your animation string.

Next without For in animation string
Every For command must be matched by a corresponding Next statement. Check any nested loops for an
unnecessary Next.

Syntax error in animation string
A mistake has been made when typing in an animation string. AMAL commands consist of one or two capital letters
only, and not full keywords as used in AMOS Professional Basic.

Compatibility with STOS animation commands

AMOS Professional has evolved from the original STOS Basic, written by Francois Lionet and released in 1988 for
the Atari-ST. STOS included a celebrated and powerful animation system using interrupts, which allowed Sprites to
be moved in complex patterns. Although this system has been overshadowed by AMAL, it still provides a simple
introduction to Amiga animation. Furthermore, the following commands will allow those loyal AMOS Professional
users, who created STOS programs in the past, to convert STOS to AMOS!

Unlike STOS, the movement patterns in AMOS Professional can be assigned to any animation channel, and the
MOVE commands can be used to animate Bobs, Sprites and screens, using exactly the same techniques.

As a default, all animation channels are assigned to the equivalent hardware Sprites, but because Bobs are much
closer to the standard STOS Sprites, it may be found more convenient to substitute Bobs by adding a set of
CHANNEL commands at the start of a program, like this:

X> Channel 1 To Bob 1
Channel 2 To Bob 2

07.06.21

AMAL

Remember to call DOUBLE BUFFER during the initialisation procedure, to prevent unwanted flickers when your
Bobs are moved.

The same channel can be used for STOS animations and AMAL programs, so it is easy to extend your routines once
they have been successfully converted from STOS to AMOS Professional. The order of execution is AMAL ...
MOVE X ... MOVE Y ... ANIM.

STOS compatibility is featured in the following ready-made demonstration program:

LD> Load "AMOSPro Tutorial:Tutorials/AMAL/AMAL 5.AMOS"
Here is the entire STOS-compatible range of commands.

MOVE X

instruction: move a Sprite horizontally

Move X number,"(speed,step,count)... (speed,step,count)L"
Move X number,"(speed,step,count)Enumber"

The MOVE X command defines a list of horizontal movements to be performed on the animation channel specified
by the given number. This number can range from 0 to 15, and refers to an animation sequence for an Object already
assigned by the CHANNEL command. The number is followed by a "movement string" containing a series of
instructions which control the speed and direction of the Object. These movement commands are enclosed by
brackets, and are entered as the following three parameters, separated by commas.

The speed parameter sets a delay between each step of the movement, given in 50ths of a second. Speed can vary
from a value of 1 for very fast, all the way to 32767 for incredibly slow. This is followed by a step value, setting the
number of pixels the Object is to be moved during each operation. A positive value moves the Object to the right,
and a negative number to the left. The apparent speed of the Object will depend on the relationship between the
speed and the step values, varying from slow and smooth, to rapid but jerky movements. A speed value of about 10
(or -10) is recommended. The last parameter is a count value, which determines the number of times the movement
is to be repeated. Values range between 1 and 32767, with the additional value of zero causing an indefinite
repetition.

It is vital to add an L (loop) instruction to the movement string after these parameters, if you want to force a jump to
the start of the string, forcing the entire sequence to be run again. Here is an example:

E> Load "AMOSPro Tutorial:Objects/Sprites.Abk" :Get Sprite Palette
Sprite 1,360,100,1
Move X1,"(1,1,60) (1,-5,60)L"
Move On
Direct

An alternative ending to the movement string is to use the E option, followed by the value of an x-coordinate.

07.06.22

AMAL

This stops the Object when it reaches the specified coordinate value, which must be less than (or equal to) the
original horizontal target destination. Try changing the third line of the last example to this:

E> Move X 1,"(1,-5,30)E100"

MOVEY

instruction: move Object vertically

Move Y number,"(speed,step,count) ...(speed,step,count)"
Move Y number,"(speed,step,count) ...(speed,step,count)L"

This command operates in the same way as MOVE X, and controls vertical movement. First the number of an
animation sequence is given, ranging from 0 to 15, and this sequence must be Already allocated using the
CHANNEL command. Then the movement string is given, as explained above. Positive values for the step
parameter control downward movements, and a negative value will result in an upward movement. Here is an
example:

E> Load "AMOSPro Tutorial:Objects/Sprites.abk" : Get Sprite Palette
Channel 1 To Sprite 1: Sprite 1,228,50,1: Wait Vbl
Move Y 1,"(1,1,180) (1,-1,180)L" : Rem Loop Sprite
Channel 2 To Screen Display 0: Rem Assign screen position
Move Y 2,"(1,4,25) (1,-4,25)" : Rem Bounce screen up and down
Move On : Wait Key

MOVE ON

MOVE OFF

instructions: toggle movements
Move On

Move On number

Move Off

Move Off number

Before any movement patterns can be executed, they must be activated by a MOVE ON command. All movements
will begin at once unless an optional number is given, in which case only that particular animation sequence will be
activated. MOVE OFF has the opposite effect, halting all animations, or a single sequence specified by its number.

MOVON
function: report movement status
value=Move On(Object number)

Use the MOVON function to check whether a particular Object is being moved by a MOVE X or MOVE Y
command. A value of -1 (true) is returned while the Object is in motion, otherwise zero (false) is given for static
Objects. Please note that MOVON does not search for patterns generated by AMAL.

07.06.23

AMAL

MOVE FREEZE

instruction: suspend Object movement
Move Freeze

Move Freeze number

This command suspends the movement of all Objects on screen. Frozen Objects may be re- animated using the
MOVE ON command. If an optional Object number is given after MOVE FREEZE, then only that Object will be
frozen.

ANIM

instruction: animate an Object

Anim number"(image,delay) (image,delay)"
Anim number"(image,delay) (image,delay)L"

ANIM is used to take an Object through a sequence of different images, creating smooth animation effects. These
animations are performed fifty times every second, using interrupts, so they can be executed simultaneously with
AMOS Professional Basic programs. After the ANIM command, a channel number must be given to specify the
Object to be animated. Then an animation string is given, with each operation composed of a pair of brackets
holding an image number and a delay time (in 50ths of a second). For example:

E> Load "AMOSPro Tutorial:Objects/Sprites.abk" : Get Sprite Palette
Channel 1 To Sprite 8: Sprite 8,200,100,1
Anim 1,"(1,10) (2,10) (3,10) (4,10)"
Anim On : Wait Key

Similarly to the MOVE command, an L(loop) directive can be added to the movement string, which will
continuously repeat the animation. Try changing the third line in the last example to this:

E> Anim 1,"(1,10) (2,10) (3,10) (4,10)L"

ANIM ON

ANIM OFF

instructions: toggle animations on and off
Anim On

Anim On number

Anim Off

Anim Off number

To activate all animation sequences already created by an ANIM command, use ANIM ON. If ail individual

sequence is specified by number, then only that sequence will be affected. Similarly, sequences started by ANIM ON
may be turned off by the ANIM OFF command.

07.06.24

AMAL

ANIM FREEZE

instruction: freeze an animation
Anim Freeze

Anim Freeze number

The ANIM FREEZE command suspends all animation sequences on screen, leaving them frozen in place. An

optional number may be given to freeze that specific sequence only. Animations can be started again with a simple
call to ANIM ON.

The AMAL Editor
As a final reminder, the AMAL Editor is a vital accessory program for AMOS Professional programmers wishing to
create detailed or complex movement patters. It is fully explained in Chapter 13.5.

07.06.25

Icons and Blocks

This Chapter deals with the practical handling of rectangular units of graphic images.

Background screen graphics

It is common for modern arcade games to feature hundreds of different background screens, over which the
animated action takes place. Similarly, practical programs like kitchen-planners may need to display scores of varied
settings. A fraction of these requirements would normally exhaust your Amiga's memory, leaving no room at all for
your program!

To overcome this restriction, backgrounds can be constructed from a set of simple graphic blocks, to be arranged
and re-arranged as you wish, in varied patterns Each background screen can now be stored as a simple list of
component blocks. These blocks are sometimes known as "tiles", and AMOS Professional provides two sets of
alternative tiles: Icons, which are held in their own memory bank, and Blocks, which are held as temporary data.

Icons

An Icon is an individual image, specifically designed to act as a component of a background screen picture. All
Icons are stored in their own AMOS Professional memory bank, which is bank 2, and this Icon Bank will be saved
along with your program listing automatically.

Once an Icon is drawn it has a fixed location and cannot be moved to another part of the screen.

Icons are displayed using the Amiga's Blitter chip, which is also responsible for the display of Robs. However,
because Icons are essentially static Objects, they are normally drawn in replace mode. This means that any existing
graphics at the relevant screen location will be completely erased by the Icon.

Here is a complete list of the Icon commands.

GET ICON

instruction: create an Icon

Get Icon Icon number,x1,y1 To x2,y2

Get Icon screen number,lcon number,x1,y1 To x2,y2

The GET ICON command grabs an image from the screen and loads it into an Icon. Specify the Icon number, and
then give the coordinates of the rectangle that is to be grabbed, from the top left-hand corner to the bottom right-
hand corner. If the Icon whose number you specify does not already exist, it will be created in Bank 2. If the
memory bank has not been reserved, this will also be done automatically.

An optional screen number can also be given, immediately after the GET ICON instruction, and this will select the
screen to be used as the source of the Icon's image. If this screen number is omitted, the image is taken from the
current screen.

GET ICON PALETTE
instruction: load Icon colours into current screen
Get Icon Palette

This instruction is usually employed to initialise a screen, after Icons have been loaded from disc.

07.07.01

Icons and Blocks

GET ICON PALETTE grabs the colours of the Icon images stored in Bank 2, and loads them in to the current
screen.

PASTE ICON
instruction: draw an Icon
Paste Icon x,y,number

Use the PASTE ICON command to draw the specified Icon number already stored in Bank 2, on screen. The screen
position is defined by graphic coordinates, and can be anywhere you like. Icon images will be clipped in the normal
way, if they exceed the standard limitations. Here is a simple example:

E> Flash Off : Load Iff "AMOSPro Examples:Iff/logo.iff"
z=0
For A=0 To 304 Step 16
Inc 2
Get Block Z,A,1,16,199
Next A
Cls O
For A=0 To 304 Step 16
Put Block Z,A,0
Dec Z
Wait Vbl
Next A

If the DOUBLE BUFFER system in engaged, a copy of the Icon will be drawn into both the logical and physical
screens, and because this takes a little time, you are advised to add a call to AUTOBACK 0 before drawing Icons on
screen. This restricts the Icon to the current logical screen, and then the entire background may be copied to the
physical screen, using SCREEN COPY, which is a much faster process.

DEL ICON

instruction: delete Icons

Del Icon number

Del Icon first number To last number

DEL ICON erases the Icon whose number is specified from Bank 2. A second Icon number may also be given, in
which case, all Icons from the first number TO the second number will be deleted. When the final Icon in the bank
has been deleted, the whole bank will be removed from memory.

INS ICON

instruction: insert a blank Icon image into the Icon bank
Ins Icon number

Ins Icon first To last

The INS ICON instruction operates in exactly the same way as INS BOB, which is explained in Chapter 7.2.

07.07.02

Icons and Blocks

MAKE ICON MASK

instruction: set colour zero to transparent
Make Icon Mask

Make Icon Mask number

Normally, any Icons that are drawn on screen completely replace the existing background image, and the Icon
appears in a rectangular box filled with colour zero. If you prefer to overlay Icons on top of the current graphics, a
mask must be created. This is achieved by the MAKE ICON MASK command, and sets colour zero to transparent.
All Icons in Bank 2 will be affected by this instruction, unless an optional Icon number is given, in which case only
that Icon will be masked.

NO ICON MASK
instruction: remove colour zero mask from Icon
No Icon Mask number

This command performs exactly the same task as the NO MASK instruction, explained in Chapter 7.2, except that it
is used with Icons instead of Bobs.

Screen Blocks

Unlike Icons, graphic Blocks are not saved along with your programs, and the following BLOCK Instructions are
used to hold and manipulate temporary graphics data. Blocks are extremely useful for setting up items such as
dialogue boxes, by saving background pictures before new graphics are displayed. They can be used to create "tiles"
for all sorts of entertainment programs, such as visual puzzles, as well as practical programs like identi-kits and
architectural planners.

GET BLOCK

instruction: grab a screen Block into memory
Get Block number,x,y,width,height

Get Block number,x,y,width,height,mask

The GET BLOCK command is used to grab a rectangular area